Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "regresja przestrzenna" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
GeoMedia Enterprise Intelligence – nowe zastosowania kartograficznej metody badań w wielokryterialnej analizie danych przestrzennych
GeoMedia Enterprise Intelligence – new applications of cartographic methodology in multicriteria spatial data analysis
Autorzy:
Olszewski, R.
Fiedukowicz, A.
Powiązania:
https://bibliotekanauki.pl/articles/345867.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Informacji Przestrzennej
Tematy:
eksploracyjna analiza danych przestrzennych
korelacja
regresja
statystyka przestrzenna
ekonometria przestrzenna
spatial data mining
corelation
regression
spatial statistic
spatial econometry
Opis:
W ramach innowacyjnego projektu geoinformacyjnego B+R finansowanego ze środków POIG Wydział Geodezji i Kartografii Politechniki Warszawskiej wraz firmą Intergraph oraz z Wrocławskim Instytutem Zastosowań Informacji Przestrzennej i Sztucznej Inteligencji realizuje temat „Opracowanie i wdrożenie innowacyjnej technologii GeoMedia Enterprise Intelligence realizującej wielokryterialną analizę danych przestrzennych w środowisku narzędziowym desktop oraz Web”. W ramach nawiązanej współpracy możliwe stało się wdrożenie opracowywanych od lat przez Zakład Kartografii PW algorytmów typu spatial data mining, umożliwiających uwzględnienie aspektu przestrzennego w analizach statystycznych. Autorzy pragną uzyskać wartość dodaną poprzez połączenie w celowy ciąg technologiczny szeregu analiz geostatystycznych, wzbogaconych o zaawansowane wizualizacje kartograficzne. W ciągu tym zaproponowano algorytmy mające służyć wstępnemu przetworzeniu danych, w tym metodę agregacji i metodę reduktów, oraz szereg klasycznych metod statystycznych wzbogaconych o ujęcie lokalne i powiązania przestrzenne.
The Cartography Department of Geodesy and Cartography Faculty of Warsaw University of Technology, in collaboration with Intergraph Poland Sp. z o. o. and Wroclaw Institute of Spatial Information and Artificial Intelligence works on the subject of "Development and implementation of innovative technology GeoMedia Enterprise Intelligence in multicriteria spatial data analysis in both desktop and Web environment" This R&D project is funded by the Innovative Economy Operational Programme EU in Poland. Within the framework of this cooperation it became possible to implement new algorithms as well as to extend the existing ones (touching most of the spatial aspects to be included in the analysis) which were developed in the Cartography Department. The authors intend to obtain added value by combining a number of spatial statistics analyses, enriched by cartographic visualizations, into a purposeful workflow. The algorithms included in the workflow cover among others methods of data preprocessing, including data reduction (aggregation and reducts) as well as number of classical statistical methods enriched by the local approach and spatial neighborhood.
Źródło:
Roczniki Geomatyki; 2015, 13, 1(67); 35-37
1731-5522
2449-8963
Pojawia się w:
Roczniki Geomatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Gęstość przestrzenna rudy – parametr zasobowy drugiego planu? Złoże Cu-Ag Polkowice–Sieroszowice, Legnicko-Głogowski Okręg Miedziowy
The volumetric density of ore – resource parameter of secondary importance? The Polkowice–Sieroszowice Cu-Ag deposit, Legnica-Głogów Copper District
Autorzy:
Mucha, J.
Wasilewska-Błaszczyk, M.
Auguścik, J.
Paszek, M.
Powiązania:
https://bibliotekanauki.pl/articles/2061774.pdf
Data publikacji:
2017
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
gęstość przestrzenna
zasoby
korelacja
regresja liniowa i nieliniowa
złoże Cu-Ag
volumetric density
resource
correlation
linear and non-linear regression
Cu-Ag deposit
Opis:
Wyniki opróbowania złoża Cu-Ag Polkowice–Sieroszowice posłużyły do oceny gęstości przestrzennej ośmiu szczegółowych wydzieleń litologicznych i ich porównania z gęstościami przestrzennymi trzech podstawowych typów rud przyjętymi w aktualnej dokumentacji geologicznej. Stwierdzono, że zasoby złoża szacowane na podstawie gęstości przestrzennych szczegółowych wydzieleń litologicznych są o ok. 3% wyższe niż analogiczne oszacowania dokonane dla gęstości przestrzennych przypisywanych podstawowym typom rud w dokumentacji geologicznej. Przy zastosowaniu analizy korelacji i regresji wykazano, że dominującym czynnikiem kształtującym wielkość gęstości przestrzennej jest porowatość skał, zawartość Cu odgrywa natomiast rolę drugorzędną. Niektóre z indywidualnych wydzieleń szczegółowych ujawniły niejednorodność zbioru oznaczeń gęstości przestrzennej, która może być tłumaczona zmiennością spoiwa i porowatości oraz pojawieniem się niemiedziowych minerałów ciężkich (np. galeny, pirytu). Niektóre wydzielenia szczegółowe w obrębie podstawowych typów rud charakteryzują się wyraźnym zróżnicowaniem średniej gęstości przestrzennej (np. piaskowiec ilasty – 2,35 Mg/m3 i piaskowiec węglanowy – 2,55 Mg/m3 w serii piaskowcowej). Znajomość gęstości przestrzennej szczegółowych wydzieleń litologicznych umożliwia dokładniejsze oszacowanie ich zasobów oraz bardziej precyzyjne rozliczanie produkcji górniczej.
Volumetric density of the detailed lithological units in Polkowice-Sieroszowice Cu-Ag deposit has been compared to the density of the three basic ore types. Eight diferrent lithologies of the Cu-Ag deposit have been taken into account. It appeared that the resources in them estimated on the basis of volumetric densities are approximately 3% higher than analogous estimates for volumetric densities attributed to the basic ore types. The correlation and regression analysis have shown that the porosity of rocks is the dominant factor affecting the volumetric density, whereas the Cu content plays a secondary role. Some of the lithologies have revealed some heterogeneity of spatial density that can be explained by the variability of mineral cement and porosity as well as the presence of non-copper heavy minerals (e.g., galena, pyrite). The knowledge of the density of individual lithologies enables more accurate estimation of their resources leading to more effective production.
Źródło:
Biuletyn Państwowego Instytutu Geologicznego; 2017, 468; 227--236
0867-6143
Pojawia się w:
Biuletyn Państwowego Instytutu Geologicznego
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies