- Tytuł:
-
A Lasso and Elastic-Net Regularized Generalized Linear Model for Predicting Blast-Induced Air Over-pressure in Open-Pit Mines
Model Lasso i uogólniony model liniowy elastycznej siatki do prognozowania nadciśnienia wywołanego wybuchem w kopalniach odkrywkowych - Autorzy:
-
Bui, Xuan‑Nam
Nguyen, Hoang
Tran, Quang Hieu
Bui, Hoang‑Bac
Nguyen, Quoc Long
Nguyen, Dinh An
Le, Thi Thu Hoa
Pham, Van Viet - Powiązania:
- https://bibliotekanauki.pl/articles/318532.pdf
- Data publikacji:
- 2019
- Wydawca:
- Polskie Towarzystwo Przeróbki Kopalin
- Tematy:
-
Lasso model
kopalnia odkrywkowa
wybuchy
open pit mines
explosives - Opis:
- Air overpressure (AOp) is one of the products of blasting operations in open-pit mines which have a great impact on the environment and public health. It can be dangerous for the lungs, brain, hearing and the other human senses. In addition, the impact on the surrounding environment such as the vibration of buildings, break the glass door systems are also dangerous agents caused by AOp. Therefore, it should be properly controlled and forecasted to minimize the impacts on the environment and public health. In this paper, a Lasso and Elastic-Net Regularized Generalized Linear Model (GLMNET) was developed for predicting blast-induced AOp. The United States Bureau of Mines (USBM) empirical technique was also applied to estimate blast-induced AOp and compare with the developed GLMNET model. Nui Beo open-pit coal mine, Vietnam was selected as a case study. The performance indices are used to evaluate the performance of the models, including Root Mean Square Error (RMSE), Determination Coefficient (R2), and Mean Absolute Error (MAE). For this aim, 108 blasting events were investigated with the Maximum of explosive charge capacity, monitoring distance, powder factor, burden, and the length of stemming were considered as input variables for predicting AOp. As a result, a robust GLMNET model was found for predicting blast-induced AOp with an RMSE of 1.663, R2 of 0.975, and MAE of 1.413 on testing datasets. Whereas, the USBM empirical method only reached an RMSE of 2.982, R2 of 0.838, and MAE of 2.162 on testing datasets.
- Źródło:
-
Inżynieria Mineralna; 2019, 21, 2/2; 8-20
1640-4920 - Pojawia się w:
- Inżynieria Mineralna
- Dostawca treści:
- Biblioteka Nauki