- Tytuł:
- An approach to unsupervised classification
- Autorzy:
-
Przybyła, T.
Pander, T.
Horoba, K.
Kupka, T.
Matonia, A. - Powiązania:
- https://bibliotekanauki.pl/articles/333363.pdf
- Data publikacji:
- 2011
- Wydawca:
- Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
- Tematy:
-
klasyfikacja
grupowanie rozmyte
klasyfikacja nienadzorowana
klasyfikator najbliższych sąsiadów
classification
fuzzy clustering
unsupervised classification
nearest neighbour classifier - Opis:
- Classification methods can be divided into supervised and unsupervised methods. The supervised classifier requires a training set for the classifier parameter estimation. In the case of absence of a training set, the popular classifiers (e.g. K-Nearest Neighbors) can not be used. The clustering methods are considered as unsupervised classification methods. This paper presents an idea of the unsupervised classification with the popular classifiers. The fuzzy clustering method is used to create a learning set. The learning set includes only these patterns that are the best representative of each class in the input dataset. The numerical experiment uses an artificial dataset as well as the medical datasets (PIMA, Wisconsin Breast Cancer) and illustrates the usefulness of the proposed method.
- Źródło:
-
Journal of Medical Informatics & Technologies; 2011, 17; 105-111
1642-6037 - Pojawia się w:
- Journal of Medical Informatics & Technologies
- Dostawca treści:
- Biblioteka Nauki