Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "nieparametryczna estymacja" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Estymacja nieparametryczna wybranych parametrów bloku gazowo-parowego
Nonparametric estimation of selected parameters of steam and gas power plant
Autorzy:
Gramacki, J.
Gramacki, A.
Powiązania:
https://bibliotekanauki.pl/articles/154300.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
estymacja nieparametryczna
estymacja jądrowa
Elektrociepłownia Zielona Góra
nonparametric estimation
kernel estimation
combined heat and power plant
CHP
Opis:
W pracy pokazano przykład użycia nieparametrycznej estymacji danych. Z pomocą tej techniki dokonano oszacowania emisji tlenków azotu (NOx) na podstawie danych eksploatacyjnych zbieranych podczas normalnej pracy Elektrociepłowni w Zielonej Górze. Na wstępnie dokonano krótkiego przeglądu najbardziej popularnych technik estymacji parametrycznej i porównano je z technikami nieparametrycznymi. Następnie na prostym przykładzie pokazano istotę działania estymacji nieparametrycznej. Pracę kończy rozdział, w którym krótko omówiono uzyskane wyniki symulacyjne.
In the paper there are shown some practical examples of using nonparametric estimation. Using this technique there were estimated the nitrogen oxides (NOx) emissions based on the data taken from a real industry plant (gas and steam combined heat and power (CHP) plant in Zielona Góra, Poland). This work can be treated as a continuation of the paper [2]. In the first section there is given a short overview of estimation methods, including the linear and nonlinear regression, and comparison of them with nonparametric ones. In the second section there is briefly presented the nonparametric estimation technique and there is given a simple illustrative example. The third paragraph is dedicated to presenting the experimental results. Basing on the data from the CHP plant, the NOx emission was estimated and the satisfactory results (in comparison, for example, with the results obtained from the linear regression estimator) were obtained. All calculations were carried out using np package for R-project environment which implements a variety of nonparametric (and also semiparametric) kernel-based estimators.
Źródło:
Pomiary Automatyka Kontrola; 2009, R. 55, nr 7, 7; 454-456
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Graphics processing units in acceleration of bandwidth selection for kernel density estimation
Autorzy:
Andrzejewski, W.
Gramacki, A.
Gramacki, J.
Powiązania:
https://bibliotekanauki.pl/articles/330819.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
bandwidth selection
graphics processing unit
probability density function
nonparametric estimation
kernel estimation
szerokość pasmowa
programowalny procesor graficzny
funkcja gęstości prawdopodobieństwa
estymacja nieparametryczna
estymacja jądrowa
Opis:
The Probability Density Function (PDF) is a key concept in statistics. Constructing the most adequate PDF from the observed data is still an important and interesting scientific problem, especially for large datasets. PDFs are often estimated using nonparametric data-driven methods. One of the most popular nonparametric method is the Kernel Density Estimator (KDE). However, a very serious drawback of using KDEs is the large number of calculations required to compute them, especially to find the optimal bandwidth parameter. In this paper we investigate the possibility of utilizing Graphics Processing Units (GPUs) to accelerate the finding of the bandwidth. The contribution of this paper is threefold: (a) we propose algorithmic optimization to one of bandwidth finding algorithms, (b) we propose efficient GPU versions of three bandwidth finding algorithms and (c) we experimentally compare three of our GPU implementations with the ones which utilize only CPUs. Our experiments show orders of magnitude improvements over CPU implementations of classical algorithms.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2013, 23, 4; 869-885
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalized kernel regression estimate for the identification of Hammerstein systems
Autorzy:
Mzyk, G.
Powiązania:
https://bibliotekanauki.pl/articles/929610.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system Hammersteina
regresja nieparametryczna
estymacja jądra
Hammerstein system
nonparametric regression
kernel estimation
Opis:
A modified version of the classical kernel nonparametric identification algorithm for nonlinearity recovering in a Hammerstein system under the existence of random noise is proposed. The assumptions imposed on the unknown characteristic are weak. The generalized kernel method proposed in the paper provides more accurate results in comparison with the classical kernel nonparametric estimate, regardless of the number of measurements. The convergence in probability of the proposed estimate to the unknown characteristic is proved and the question of the convergence rate is discussed. Illustrative simulation examples are included.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2007, 17, 2; 189-197
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies