- Tytuł:
- Monochromatic paths and monochromatic sets of arcs in bipartite tournaments
- Autorzy:
-
Galeana-Sánchez, Hortensia
Rojas-Monroy, R.
Zavala, B. - Powiązania:
- https://bibliotekanauki.pl/articles/744396.pdf
- Data publikacji:
- 2009
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
m-coloured bipartite tournaments
kernel by monochromatic paths
semikernel of D modulo i by monochromatic paths - Opis:
-
We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours and all of them are used. A directed path is called monochromatic if all of its arcs are coloured alike. A set N of vertices of D is called a kernel by monochromatic paths if for every pair of vertices there is no monochromatic path between them and for every vertex v in V(D)∖N there is a monochromatic path from v to some vertex in N. We denote by A⁺(u) the set of arcs of D that have u as the initial endpoint.
In this paper we introduce the concept of semikernel modulo i by monochromatic paths of an m-coloured digraph. This concept allow us to find sufficient conditions for the existence of a kernel by monochromatic paths in an m-coloured digraph. In particular we deal with bipartite tournaments such that A⁺(z) is monochromatic for each z ∈ V(D). - Źródło:
-
Discussiones Mathematicae Graph Theory; 2009, 29, 2; 349-360
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki