Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "k -kernel" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
A sufficient condition for the existence of k-kernels in digraphs
Autorzy:
Galeana-Sánchez, H.
Rincón-Mejía, H.
Powiązania:
https://bibliotekanauki.pl/articles/744223.pdf
Data publikacji:
1998
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
digraph
kernel
k-kernel
Opis:
In this paper, we prove the following sufficient condition for the existence of k-kernels in digraphs: Let D be a digraph whose asymmetrical part is strongly conneted and such that every directed triangle has at least two symmetrical arcs. If every directed cycle γ of D with l(γ) ≢ 0 (mod k), k ≥ 2 satisfies at least one of the following properties: (a) γ has two symmetrical arcs, (b) γ has four short chords. Then D has a k-kernel.
This result generalizes some previous results on the existence of kernels and k-kernels in digraphs. In particular, it generalizes the following Theorem of M. Kwaśnik [5]: Let D be a strongly connected digraph, if every directed cycle of D has length ≡ 0 (mod k), k ≥ 2. Then D has a k-kernel.
Źródło:
Discussiones Mathematicae Graph Theory; 1998, 18, 2; 197-204
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the existence of (k,l)-kernels in infinite digraphs: A survey
Autorzy:
Galeana-Sánchez, H.
Hernández-Cruz, C.
Powiązania:
https://bibliotekanauki.pl/articles/30148241.pdf
Data publikacji:
2014-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
kernel
k-kernel
infinite digraph
(k, l)-kernel
Opis:
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent (if u, v ∈ N, u 6= v, then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l) set of vertices. A k-kernel is a (k, k −1)-kernel. This work is a survey of results proving sufficient conditions for the existence of (k, l)-kernels in infinite digraphs. Despite all the previous work in this direction was done for (2, 1)-kernels, we present many original results concerning (k, l)-kernels for distinct values of k and l. The original results are sufficient conditions for the existence of (k, l)- kernels in diverse families of infinite digraphs. Among the families that we study are: transitive digraphs, quasi-transitive digraphs, right/left pretransitive digraphs, cyclically k-partite digraphs, κ-strong digraphs, k-transitive digraphs, k-quasi-transitive digraphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 3; 431-466
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cyclically k-partite digraphs and k-kernels
Autorzy:
Galeana-Sánchez, Hortensia
Hernández-Cruz, César
Powiązania:
https://bibliotekanauki.pl/articles/743833.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
digraph
kernel
(k,l)-kernel
k-kernel
cyclically k-partite
Opis:
Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively.
A (k,l)-kernel N of D is a k-independent set of vertices (if u,v ∈ N then d(u,v) ≥ k) and l-absorbent (if u ∈ V(D)-N then there exists v ∈ N such that d(u,v) ≤ l). A k-kernel is a (k,k-1)-kernel. A digraph D is cyclically k-partite if there exists a partition ${V_i}_{i = 0}^{k-1}$ of V(D) such that every arc in D is a $V_i V_{i+1}-arc$ (mod k). We give a characterization for an unilateral digraph to be cyclically k-partite through the lengths of directed cycles and directed cycles with one obstruction, in addition we prove that such digraphs always have a k-kernel. A study of some structural properties of cyclically k-partite digraphs is made which bring interesting consequences, e.g., sufficient conditions for a digraph to have k-kernel; a generalization of the well known and important theorem that states if every cycle of a graph G has even length, then G is bipartite (cyclically 2-partite), we prove that if every cycle of a graph G has length ≡ 0 (mod k) then G is cyclically k-partite; and a generalization of another well known result about bipartite digraphs, a strong digraph D is bipartite if and only if every directed cycle has even length, we prove that an unilateral digraph D is bipartite if and only if every directed cycle with at most one obstruction has even length.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 1; 63-78
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On (k,l)-kernels of special superdigraphs of Pₘ and Cₘ
Autorzy:
Kucharska, Magdalena
Kwaśnik, Maria
Powiązania:
https://bibliotekanauki.pl/articles/743435.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
kernel
semikernel
(k,l)-kernel
Opis:
The concept of (k,l)-kernels of digraphs was introduced in [2]. Next, H. Galeana-Sanchez [4] proved a sufficient condition for a digraph to have a (k,l)-kernel. The result generalizes the well-known theorem of P. Duchet and it is formulated in terms of symmetric pairs of arcs. Our aim is to give necessary and sufficient conditions for digraphs without symmetric pairs of arcs to have a (k,l)-kernel. We restrict our attention to special superdigraphs of digraphs Pₘ and Cₘ.
Źródło:
Discussiones Mathematicae Graph Theory; 2001, 21, 1; 95-109
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On (k,l)-kernel perfectness of special classes of digraphs
Autorzy:
Kucharska, Magdalena
Powiązania:
https://bibliotekanauki.pl/articles/744319.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
kernel
(k,l)-kernel
kernel-perfect digraph
Opis:
In the first part of this paper we give necessary and sufficient conditions for some special classes of digraphs to have a (k,l)-kernel. One of them is the duplication of a set of vertices in a digraph. This duplication come into being as the generalization of the duplication of a vertex in a graph (see [4]). Another one is the D-join of a digraph D and a sequence α of nonempty pairwise disjoint digraphs. In the second part we prove theorems, which give necessary and sufficient conditions for special digraphs presented in the first part to be (k,l)-kernel-perfect digraphs. The concept of a (k,l)-kernel-perfect digraph is the generalization of the well-know idea of a kernel perfect digraph, which was considered in [1] and [6].
Źródło:
Discussiones Mathematicae Graph Theory; 2005, 25, 1-2; 103-119
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
k-kernels in generalizations of transitive digraphs
Autorzy:
Galeana-Sánchez, Hortensia
Hernández-Cruz, César
Powiązania:
https://bibliotekanauki.pl/articles/743887.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
digraph
kernel
(k,l)-kernel
k-kernel
transitive digraph
quasi-transitive digraph
right-pretransitive digraph
left-pretransitive digraph
pretransitive digraph
Opis:
Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively.
A (k,l)-kernel N of D is a k-independent set of vertices (if u,v ∈ N, u ≠ v, then d(u,v), d(v,u) ≥ k) and l-absorbent (if u ∈ V(D)-N then there exists v ∈ N such that d(u,v) ≤ l). A k-kernel is a (k,k-1)-kernel. Quasi-transitive, right-pretransitive and left-pretransitive digraphs are generalizations of transitive digraphs. In this paper the following results are proved: Let D be a right-(left-) pretransitive strong digraph such that every directed triangle of D is symmetrical, then D has a k-kernel for every integer k ≥ 3; the result is also valid for non-strong digraphs in the right-pretransitive case. We also give a proof of the fact that every quasi-transitive digraph has a (k,l)-kernel for every integers k > l ≥ 3 or k = 3 and l = 2.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 2; 293-312
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the Complexity of the 3-Kernel Problem in Some Classes of Digraphs
Autorzy:
Hell, Pavol
Hernández-Cruz, César
Powiązania:
https://bibliotekanauki.pl/articles/30147225.pdf
Data publikacji:
2014-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
kernel
3-kernel
NP-completeness
multipartite tournament
cyclically 3-partite digraphs
k-quasi-transitive digraph
Opis:
Let D be a digraph with the vertex set V (D) and the arc set A(D). A subset N of V (D) is k-independent if for every pair of vertices u, v ∈ N, we have d(u, v), d(v, u) ≥ k; it is l-absorbent if for every u ∈ V (D) − N there exists v ∈ N such that d(u, v) ≤ l. A k-kernel of D is a k-independent and (k − 1)-absorbent subset of V (D). A 2-kernel is called a kernel. It is known that the problem of determining whether a digraph has a kernel (“the kernel problem”) is NP-complete, even in quite restricted families of digraphs. In this paper we analyze the computational complexity of the corresponding 3-kernel problem, restricted to three natural families of digraphs. As a consequence of one of our main results we prove that the kernel problem remains NP-complete when restricted to 3-colorable digraphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 1; 167-185
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies