Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "k Nearest Neighbors" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Improving prediction models applied in systems monitoring natural hazards and machinery
Autorzy:
Sikora, M.
Sikora, B.
Powiązania:
https://bibliotekanauki.pl/articles/331302.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
zagrożenie naturalne
szereg czasowy
k-najbliższy sąsiad
natural hazards monitoring
regression rules
time series forecasting
k-nearest neighbors
Opis:
A method of combining three analytic techniques including regression rule induction, the k-nearest neighbors method and time series forecasting by means of the ARIMA methodology is presented. A decrease in the forecasting error while solving problems that concern natural hazards and machinery monitoring in coal mines was the main objective of the combined application of these techniques. The M5 algorithm was applied as a basic method of developing prediction models. In spite of an intensive development of regression rule induction algorithms and fuzzy-neural systems, the M5 algorithm is still characterized by the generalization ability and unbeatable time of data model creation competitive with other systems. In the paper, two solutions designed to decrease the mean square error of the obtained rules are presented. One consists in introducing into a set of conditional variables the so-called meta-variable (an analogy to constructive induction) whose values are determined by an autoregressive or the ARIMA model. The other shows that limitation of a data set on which the M5 algorithm operates by the k-nearest neighbor method can also lead to error decreasing. Moreover, three application examples of the presented solutions for data collected by systems of natural hazards and machinery monitoring in coal mines are described. In Appendix, results of several benchmark data sets analyses are given as a supplement of the presented results.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 2; 477-491
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Space-Time-Frequency Machine Learning for Improved 4G/5G Energy Detection
Autorzy:
Wasilewska, Małgorzata
Bogucka, Hanna
Powiązania:
https://bibliotekanauki.pl/articles/226216.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
spectrum sensing
cognitive radio
machine learning
energy detection
4G
LTE
5G
k-nearest neighbors
random forest
Opis:
In this paper, the future Fifth Generation (5G New Radio) radio communication system has been considered, coexisting and sharing the spectrum with the incumbent Fourth Generation (4G) Long-Term Evolution (LTE) system. The 4G signal presence is detected in order to allow for opportunistic and dynamic spectrum access of 5G users. This detection is based on known sensing methods, such as energy detection, however, it uses machine learning in the domains of space, time and frequency for sensing quality improvement. Simulation results for the considered methods: k-Nearest Neighbor sand Random Forest show that these methods significantly improves the detection probability.
Źródło:
International Journal of Electronics and Telecommunications; 2020, 66, 1; 217-223
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detection of distributed denial of service attacks for IoT-based healthcare systems
Autorzy:
Kaur, Gaganjot
Gupta, Prinima
Powiązania:
https://bibliotekanauki.pl/articles/38701793.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
software defined networking
k-nearest neighbors
distributed denial of service
DPTCM-KNN approach
SVM
sieci definiowane programowo
k-najbliższy sąsiad
rozproszona odmowa usługi
Opis:
One of the major common assaults in the current Internet of things (IoT) network-based healthcare infrastructures is distributed denial of service (DDoS). The most challenging task in the current environment is to manage the creation of vast multimedia data from the IoT devices, which is difficult to be handled solely through the cloud. As the software defined networking (SDN) is still in its early stages, sampling-oriented measurement techniques used today in the IoT network produce low accuracy, increased memory usage, low attack detection, higher processing and network overheads. The aim of this research is to improve attack detection accuracy by using the DPTCM-KNN approach. The DPTCMKNN technique outperforms support vector machine (SVM), yet it still has to be improved. For healthcare systems, this work develops a unique approach for detecting DDoS assaults on SDN using DPTCM-KNN.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 2; 167-186
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies