Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Suszynski, R." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Inicjalizacja segmentacji k-means uwzględniająca rozkład gęstości pikseli
Autorzy:
Świta, R.
Suszyński, Z.
Powiązania:
https://bibliotekanauki.pl/articles/118366.pdf
Data publikacji:
2014
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
FA
KKZ
k-means
kmeans++
segmentacja
k-means ++
segmentation
High Density
Opis:
Artykuł przedstawia modyfikację inicjalizacji KKZ algorytmu k-means, uwzględniającą, oprócz wzajemnych odległości środków segmentów, również rozkład gęstości pikseli. Funkcja gęstości piksela jest sumą odwrotności odległości piksela od pozostałych i jest poddawana oszacowaniu na podstawie odległości piksela od wartości średniej i wariancji wartości pikseli. W eksperymentach segmentacji podlegały cztery różne sekwencje obrazów termicznych uzyskanych metodą termografii aktywnej. Pomimo dodatkowych obliczeń podczas inicjalizacji, metoda wykazała szybszą zbieżność algorytmu z czasami bardzo podobnymi do inicjalizacji KKZ, ale mniejszym błędem końcowym segmentacji.
This article presents a modification for the KKZ initialization of the k-means segmentation algorithm, which, in addition to the mutual distance of segments, takes into account the density of pixels. Pixel density is expressed asa sum of the inverse of the pixel’s distance to the other pixels and is subjected to estimation based on the distance from the mean and variance of the pixel values. In the experiments, four different sequences of thermal images were used, obtained using active thermography. Despite the additional calculations during initialization, method showed a faster convergence of the algorithm, with processing times very similar to the KKZ initialization, but with a lower final segmentation error.
Źródło:
Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej; 2014, 6; 89-98
1897-7421
Pojawia się w:
Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Segmentacja sekwencji obrazów metodą korelacyjną
Segmentation of the image sequence using the correlation method
Autorzy:
Świta, R.
Suszyński, Z.
Powiązania:
https://bibliotekanauki.pl/articles/152568.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
segmentacja
obrazy termiczne
korelacja
K-means
FCM
segmentation
thermal images
correlation
k-means
Opis:
Artykuł przedstawia nową metodę segmentacji sekwencji obrazów termicznych wyodrębniającą obszary o różnych właściwościach cieplnych. Metoda oparta jest na korelacji położenia i kształtu segmentów w poszczególnych kadrach sekwencji. Segmentacja pozwala zmniejszyć liczbę analizowanych obszarów do kilku tysięcy razy, co stwarza realne możliwości praktycznego wykorzystania tomografii termicznej. Opisana metoda jest porównana z algorytmami klasteryzacji K-Means i FCM. Zaletą algorytmu korelacyjnego jest automatyczne wyznaczanie liczby segmentów wyjściowych.
This paper presents a new method for segmentation of thermal image sequences. Its aim is to divide the sequence into segments with different thermal properties. The described algorithm is based on measurements of the position and shape correlation of the segments in successive frames of the sequence. It is composed of several stages. The first stage consists of segmenting consecutive frames of the sequence (Fig. 2). The second step is analysis of the similarity of each segment in each frame with respect to all other segments of all frames and synthesis of the intermediate segments (Fig. 4). The intermediate segments form the segmented output image using the depth buffer technique to resolve multiple pixel-to-segment assignments (Fig. 6). This method is a basis for the thermal analysis of solids, which results in discovering depth profiles of thermal properties for each area. The segmentation reduces the number of the analyzed areas down to a few thousand times, which creates real opportunities for practical application of thermal tomography. The new algorithm has been compared with the K means algorithm [2], and FCM [6], which minimizes the sum of pixel value deviations from the centers of the segments they are assigned to, for all frames of the sequence (Tab. 1). The advantage of the correlation method is automatic determination of the number of output segments in the image and maintaining the constant segmentation error when increasing the number of the processed frames.
Źródło:
Pomiary Automatyka Kontrola; 2013, R. 59, nr 7, 7; 680-683
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies