Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "k-NN classifier" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
The pair-wise linear classifier and the k-NN rule in application to ALS progression differentiation
Autorzy:
Sokołowska, B.
Jóźwik, A.
Niebroj-Dobosz, I.
Janik, P.
Powiązania:
https://bibliotekanauki.pl/articles/333011.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie wzorców
wybór funkcji
klasyfikator liniowy
zasada k-NN
biomarkery
stwardnienie zanikowe boczne
pattern recognition
feature selection
linear classifier
k-NN rule
pair-wise classifier
biomarkers
amyotrophic lateral sclerosis
Opis:
The two kinds of classifier based on the k-NN rule, the standard and the parallel version, were used for recognition of severity of ALS disease. In case of the second classifier version, feature selection was done separately for each pair of classes. The error rate, estimated by the leave one out method, was used as a criterion as for determination the optimum values of k's as well as for feature selection. All features selected in this manner were used in the standard and in the parallel classifier based on k-NN rule. Furthermore, only for the verification purpose, the linear classifier was applied. For this kind of classifier the error rates were calculated by use the training set also as a testing one. The linear classifier was trained by the error correction algorithm with a modified stop condition. The data set concerned with the healthy subjects and patients with amyotrophic lateral sclerosis (ALS). The set of several biomarkers such as erythropoietin, matrix metalloproteinases and their tissue inhibitors measured in serum and cerebrospinal fluid (CSF) were treated as features. It was shown that CSF biomarkers were very sensitive for the ALS progress.
Źródło:
Journal of Medical Informatics & Technologies; 2012, 20; 79-83
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pattern recognition approach for analysis of metabolic response to intermittent hypoxia
Autorzy:
Sokołowska, B.
Jóźwik, A.
Powiązania:
https://bibliotekanauki.pl/articles/333610.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie wzorców
zasada k-NN
przerywane niedotlenienie
metaboliczna odpowiedź
pattern recognition
k-NN rule
pair-wise classifier
intermittent hypoxia
metabolic response
Opis:
Intermittent hypoxia (IH) elicits two forms of respiratory plasticity, which are initiated during and after exposure to IH, i.e. a long-term facilitation and a progressive augmentation of respiratory motor output. IH is often used as a model of sleep apnea and/or respiratory plasticity in humans and animals. Procedures of IH are also applied in sport medicine and rehabilitation of respiratory diseases. The aim of the present paper is an analysis of a metabolic response to acute intermittent hypoxia in a rat model. The animals were placed and monitored in a whole body plethysmographic chamber. The rats were exposed to five consecutive cycles consisting of 10-min hypoxic stimulus period separated by 10-min normoxic intervals, and additionally they were monitored up to 1 h after the final hypoxic exposure. The metabolism software analyzer recorded following variables (features): metabolic rate, carbon dioxide production, oxygen consumption and respiratory quotient. The obtained results demonstrated that acute IH causes metabolic effects during and after intermittent stimuli, which may be effectively recognized by an application of the k-NN classifiers.
Źródło:
Journal of Medical Informatics & Technologies; 2010, 15; 177-183
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies