Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "isolation forest" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Isolation Forests for Symbolic Data as a Tool for Outlier Mining
Lasy separujące dla danych symbolicznych jako narzędzie wykrywania obserwacji odstających
Autorzy:
Pełka, Marcin
Dudek, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/31233541.pdf
Data publikacji:
2024
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
symbolic data analysis
isolation forest
outliers
analiza danych symbolicznych
lasy separujące
obserwacje odstające
Opis:
Aim: Outlier detection is a key part of every data analysis. Although there are many definitions of outliers that can be found in the literature, all of them emphasise that outliers are objects that are in some way different from other objects in the dataset. There are many different approaches that have been proposed, compared, and analysed for the case of classical data. However, there are only few studies that deal with the problem of outlier detection in symbolic data analysis. The paper aimed to propose how to adapt isolation forest for symbolic data cases. Methodology: An isolation forest for symbolic data is used to detect outliers in four different artificial datasets with a known cluster structure and a known number of outliers Results: The results show that the isolation forest for symbolic data is a fast and efficient tool for outlier mining. Implications and recommendations: As the isolation forest for symbolic data appears to be an efficient tool for outlier detection for artificial data, further studies should focus on real data sets that contain outliers (i.e. credit card fraud dataset), and this approach should be compared with other outlier mining tools (i.e. DBCSAN). The authors recommend using the same initial settings for the isolation forest for symbolic data as the settings that are proposed for the isolation forest for classical data. Originality/value: This paper is the first of its kind, focusing not only on the problem of outlier detection in general, but also extending the well-known isolation forest model for symbolic data cases. Keywords: symbolic data analysis, isolation forest, outliers
Cel: Identyfikacja obserwacji odstających stanowi kluczowy element w analizie danych. Pomimo że w literaturze funkcjonuje wiele różnych definicji, czym są obserwacje odstające, to ogólnie można stwierdzić, że są to obiekty różniące się od pozostałych obserwacji ze zbioru danych. Literatura przedmiotu wskazuje wiele różnorodnych metod, które można wykorzystać w przypadku danych klasycznych. Niestety w przypadku danych symbolicznych brakuje takich analiz. Celem artykułu jest zaproponowanie modyfikacji lasów separujących (isolation forests) dla danych symbolicznych. Metodyka: W artykule wykorzystano lasy separujące dla danych symbolicznych do identyfikacji obserwacji odstających w sztucznych zbiorach danych o znanej strukturze klas i znanej liczbie obserwacji odstających. Wyniki: Otrzymane wyniki wskazują, że lasy separujące dla danych symbolicznych są efektywnym i szybkim narzędziem w identyfikacji obserwacji odstających. Implikacje i rekomendacje: Ponieważ lasy separujące dla danych symbolicznych okazały się skutecznym narzędziem w identyfikacji obserwacji odstających, celem przyszłych badań powinno być przeanalizowanie skuteczności tej metody w przypadku rzeczywistych zbiorów danych (np. zbioru dotyczącego oszustw z użyciem kart kredytowych), a także porównanie tej metody z innymi metodami, które pozwalają odnaleźć obserwacje odstające (np. DBSCAN). Autorzy sugerują, by w przypadku lasów separujących dla danych symbolicznych stosować te same parametry, jakie zwykle stosuje się w przypadku lasów losowych dla danych klasycznych. Oryginalność/wartość: Artykuł nie tylko stanowi ujęcie teorii w zakresie obserwacji odstających, ale jednocześnie proponuje, jak zastosować lasy separujące w przypadku danych symbolicznych.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2024, 28, 1; 1-10
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An anomaly detection method based on random convolutional kernel and isolation forest for equipment state monitoring
Autorzy:
Shu, Xinhao
Zhang, Shigang
Li, Yue
Chen, Mengqiao
Powiązania:
https://bibliotekanauki.pl/articles/2200934.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
anomaly detection
random convolutional kernel
isolation forest
multi-dimensional time
series
equipment state monitoring
Opis:
Anomaly detection plays an essential role in health monitoring and reliability assurance of complex system. However, previous researches suffer from distraction by outliers in training and extensively relying on empiric-based feature engineering, leading to many limitations in the practical application of detection methods. In this paper, we propose an unsupervised anomaly detection method that combines random convolution kernels with isolation forest to tackle the above problems in equipment state monitoring. The random convolution kernels are applied to generate cross-dimensional and multi-scale features for multi-dimensional time series, with combining the time series decomposing method to select abnormally sensitive features for automatic feature extraction. Then, anomaly detection is performed on the obtained features using isolation forests with low requirements for purity of training sample. The verification and comparison on different types of datasets show the performance of the proposed method surpass the traditional methods in accuracy and applicability.
Źródło:
Eksploatacja i Niezawodność; 2022, 24, 4; 758--770
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies