Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "komputer" wg kryterium: Temat


Tytuł:
The use of Brain Computer Interfaces in control processes based on the industrial PC in terms of the methods of EEG signal analyses
Autorzy:
Paszkiel, S.
Powiązania:
https://bibliotekanauki.pl/articles/333162.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
Brain Computer Interfaces
BCI
control processes
industrial PC
interfejs mózg-komputer
procesy sterowania
przemysłowy komputer PC
Opis:
The article presents applications of BCI - Brain Computer Interfaces technology in the control processes based on the infrastructure of an IPC - an Industrial PC. Methods of the EEG signal analysis such as the PCA the Principal Component Analysis and the ICA the Independent Component Analysis are also discussed. Nowadays industrial computers are increasingly used in production, due to their specific technical parameters conducive to working in difficult conditions. The use of control based on brain-computer interface speed definitely rate the performance of the employees, reduce the response time to the case and allows you to remotely perform the activity.
Źródło:
Journal of Medical Informatics & Technologies; 2013, 22; 55-62
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stanowisko laboratoryjne do pomiaru i analizy potencjałów wywołanych
Laboratory stand for acquisition and analysis of evoked potentials
Autorzy:
Jukiewicz, M.
Cysewska-Sobusiak, A.
Powiązania:
https://bibliotekanauki.pl/articles/376058.pdf
Data publikacji:
2015
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
interfejs mózg-komputer
potencjały wywołane
stanowisko laboratoryjne
MATLAB
Opis:
Elektryczna aktywność mózgu to między innymi potencjały wywołane, które są mierzalne na powierzchni głowy w wyniku zarejestrowania przez człowieka zewnętrznego bodźca (np. obrazu, dźwięku). Są one wykorzystywane zwykle w diagnostyce medycznej, ale trwają także intensywne prace nad wykorzystaniem ich w tak zwanych interfejsach mózg-komputer. W artykule opisano stanowisko laboratoryjne do pomiaru i analizy potencjałów wywołanych, utworzone na bazie oprogramowania MATLAB. Do akwizycji sygnału z powierzchni czaszki wykorzystano elektroencefalograf (EEG). Ponadto stanowisko jest wyposażone w fotostymulator, zbudowany z szesnastu diod LED i mikrokontrolera ATmega 328. Przygotowane oprogramowanie pozwala na: ustanowienie połączenia pomiędzy EEG, fotostymulatorem oraz komputerem, sterowanie bodźcami (w zależności od oczekiwanego potencjału wywołanego), filtrację zebranego sygnału i jego klasyfikację za pomocą algorytmów statystycznego uczenia maszynowego. Stanowisko wspomaga projektowanie prostych interfejsów-mózg komputer.
One type of brain's electrical activity are evoked potentials. They appear on the scalp as a result of a registration of an external stimulus (e.g. an appearance or a change of a sound, a flashing light or an image). Generally they are used in medical diagnosis, but they are also used in brain computer-interfaces. In this article laboratory stand for acquisition and analysis of evoked potentials is described. One of the main part of this stand is a stimulator (consisting of sixteen LEDs and a microcontroller ATmega 328). The software created by the authors allows: connection between EEG device, stimulator and computer, stimulus control, signal filtering and its classification. The presented laboratory stand may support brain-computer interface design process.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2015, 82; 261-266
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Koncepcja sterowania małym pojazdem za pomocą interfejsu mózg-komputer
Concept of small vehicle control by brain-computer interface
Autorzy:
Jukiewicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/376881.pdf
Data publikacji:
2013
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
interfejs mózg-komputer
BCI
interfejs asynchroniczny
sterowanie małym pojazdem
Opis:
Interfejs mózg-komputer to system pozwalający na bezpośrednią komunikację pomiędzy mózgiem a urządzeniem zewnętrznym. Każda aktywność mózgu przejawia się w postaci pojawiającego się w nim potencjału elektrycznego. Jego pomiar możliwy jest za pomocą elektroencefalografu wyposażonego w elektrody zamontowane na powierzchni czaszki. Jest to rozwiązanie najczęściej obecnie stosowane w interfejsach mózg-komputer. Poza prezentacją aktualnego stanu wiedzy, celem niniejszej pracy jest prezentacja prostego interfejsu mózg-komputer. W tym rozwiązaniu sygnał z powierzchni czaszki jest mierzony za pomocą jednoelektrodowego urządzenia MindWave firmy NeuroSky, a następnie bezprzewodowo przekazywany do układu Arduino. Układ Arduino, na podstawie otrzymanego sygnału, steruje jeżdżącą platformą. U użytkownika skupiającego uwagę (np. na wspomnianej platformie) w sygnale pomierzonym z powierzchni czaszki, pojawiają się tzw. fale beta. Na podstawie wartości ich amplitudy (czyli przekroczenia określonego progu), układ Arduino decyduje o ewentualnym ruchu platformy.
The brain-computer interface makes possible to do the direct connection between brain and an external device. Every brain activity causes a rise in electrical potential. Measurement of that potential is possible by electrodes mounted on the surface of the skull. This method is the most popular and is called electroencephalography. This article presents brain-computer interface technology overview and its simple implementation. In this implementation, signal is measured by one-electrode device MindWave from NeuroSky, and then it is wirelessly transmitted to Arduino board. Microcontroller controls the mobile platform based on the received signal. When the user is focusing his attention, for example, on a mobile platform, it is possible to measure the beta waves from the surface of the skull. If the threshold value is exceeded, Arduino moves of the mobile platform.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2013, 75; 223-229
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Interfejsy mózg-komputer – krótka historia
Autorzy:
Michnik, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/31343817.pdf
Data publikacji:
2022
Wydawca:
Międzynarodowe Stowarzyszenie na rzecz Robotyki Medycznej
Tematy:
interfejs mózg-komputer
neuralink
mózg
brain-computer interface
brain
Opis:
Nie tak dawno temu, interfejsy mózg-komputer były jedynie domeną powieści science-fiction. Obecnie dla wielu osób niepełnosprawnych ruchowo, interfejsy mózg-komputer stają się powoli nadzieją na przywrócenie lub kompensacje utraconych funkcji. Niezależnie od branży medycznej, interfejsy mózg-komputer stanową również bardzo interesujący temat dla firm działających w branży rozrywkowej czy mediach społecznościowych. W artykule zostały przedstawione najpopularniejsze techniki odczytywania aktywności mózgu wykorzystywane w interfejsach mózg-komputer. Przedstawiono również przykłady najnowszych prac prowadzonych w tej dziedzinie.
Not so long ago, brain-computer interfaces were only the domain of science fiction novels. Currently, for many people with motor disabilities, brain-computer interfaces are slowly becoming a hope for restoring or compensating for lost functions. Regardless of the medical industry, brain-computer interfaces are also a very interesting topic for companies operating in the entertainment and social media industry. The article presents the most popular brain activity reading techniques used in brain computer interfaces. Examples of recent work in this field are also presented.
Źródło:
Medical Robotics Reports; 2022, 10/11; 58-67
2299-7407
Pojawia się w:
Medical Robotics Reports
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sposoby generowania stymulacji wywołujących SSVEP z zastosowaniem monitorów LCD
Autorzy:
Zawiślak, T.
Powiązania:
https://bibliotekanauki.pl/articles/118484.pdf
Data publikacji:
2017
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
aparatura stymulująca
SSVEP
interfejs mózg-komputer
LCD
stimulation apparatus
brain-computer interface
Opis:
Potencjał stanu ustalonego (SSVEP - ang. Steady State Visually Evoked Potential) to odpowiedź mózgu na obserwowane stymulacje świetlne pojawiające się ze stałą częstotliwością. Podczas tego zjawiska w sygnale EEG (Elektroencefalogram) odbieranym z powierzchni czaszki w okolicach kory wzrokowej następuje znaczny wzrost mocy sygnału w częstotliwości z jaką pojawia się bodziec świetlny. W eksperymentach badających to zjawisko oraz interfejsach mózg-komputer (ang. BCI - Brain Computer Interface) bazujących na nim, stosuje się różne rozwiązania do wysyłania stymulacji. Wiodącymi metodami jest zastosowanie układów ze źródłem światła wykorzystującym diody elektroluminescencyjne (LED) lub wykorzystanie ekranów monitorów komputerowych (CRT, LCD). Niniejszy artykuł zawiera opis problemu oraz przegląd metod wykorzystywanych do wywoływania stymulacji na ekranie monitora.
The Steady State Visually Evoked Potential (SSVEP) is the brain's response to the observed light stimulation occurring at a constant frequency. During this phenomenon in the EEG (Electroencephalogram) signal received from the skull surface near the visual cortex there is a significant increase in signal strength in the frequency with which the light stimulus appears. In experiments investigating this phenomenon as well as in Brain Computer Interfaces (BCI) based on it, various solutions are used to send stimulation. The leading methods are the use of systems with a light source using electroluminescent diodes (LED) or the use of computer screens (CRT, LCD). This article contains a description of the problem and an overview of the methods used to stimulate the monitor screen.
Źródło:
Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej; 2017, 11; 123-131
1897-7421
Pojawia się w:
Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Usuwanie artefaktów z sygnałów sterujących interfejsem mózg-komputer
Artifact Removal from Brain–Computer Interface Signals
Autorzy:
Jukiewicz, M.
Buchwald, M.
Cysewska-Sobusiak, A.
Powiązania:
https://bibliotekanauki.pl/articles/377614.pdf
Data publikacji:
2017
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
interfejs mózg-komputer
potencjały wywołane
SSVEP
BSS
FastICA
AMUSE
Infomax
MATLAB
Python
Opis:
Elektroencefalografia jest metodą pozwalającą na pomiar elektrycznej aktywności mózgu. Metoda ta jest wykorzystywana do diagnostyki pracy mózgu oraz w tzw. interfejsach mózg-komputer, czyli urządzeniach pozwalających na bezpośrednią komunikację pomiędzy mózgiem a jednostką obliczeniową. Interfejsy takie tworzone są głównie z myślą o osobach częściowo sparaliżowanych lub dotkniętych syndromem zamknięcia. Jednym ze zjawisk zachodzącym w mózgu, wykorzystywanym w interfejsach mózg-komputer, są Wzrokowe Potencjały Wywołane Stanu Ustalonego SSVEP (Steady State Visually Evoked Potentials). Jeśli osoba badana obserwuje bodziec, migający z określoną częstotliwością, to sygnał o tej samej częstotliwości (dominującej) zostanie zmierzony nad korą wzrokową. W takich urządzeniach bardzo istotne jest przetwarzanie zmierzonego sygnału w taki sposób, aby zapewnić jak największą skuteczność rozpoznania na co w danej chwili patrzy osoba badana. Jednym ze sposobów na osiągnięcie tego celu może być wykorzystanie Ślepej Separacji Sygnałów BSS (Blind Source Separation), której celem jest znalezienie i usunięcie z mierzonych sygnałów niepożądanych składowych, np. związanych z mrugnięciami oczu czy napinaniem mięśni twarzy. W prezentowanym artykule zostały umówione sposoby wykorzystania Ślepej Separacji Sygnałów w badaniach elektroencefalograficznych nad Wzrokowymi Potencjałami Wywołanymi Stanu Ustalonego. Przedstawiono także wyniki skuteczności rozpoznania intencji badanego w zależności od liczby usuniętych składowych, rodzaju algorytmu Ślepej Separacji Sygnału i sposobu klasyfikacji sygnału.
Electroencephalography allows recording the electrical activity of the brain. This method is used for diagnosis purposes as well as in brain–computer interfaces. Focusing on the brain–computer interface, it can be used to let the direct communication between the brain and a computing unit. This device is particularly useful for paralyzed patients or people suffering from a lock–in syndrome. Of the phenomena used in such systems, steady state visually evoked potentials (SSVEP) are probably the most common ones. If a subject is asked to focus on the flashing stimulus, a signal of the same frequency may be measured from the subject’s visual cortex. Proper preprocessing steps has to be taken in order to obtain maximally accurate stimuli recognition (as the specific frequency). One way to achieve this might be by applying the Blind Source Separation algorithms (BSS). BSS are designed to find and remove artifacts from the measured signal, e.g. noises associated with eye blinks or facial muscles contraction. In the present article an utilization of the BSS algorithms in the SSVEP–based EEG study was described. Additionally we report the accuracy of the stimuli categorization as depending on the number of removed components, kind of the blind source separation procedure and the type of the classification algorithm.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2017, 89; 195-204
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Interfejsy mózg-komputer w sterowaniu urządzeniami i systemami mechatronicznymi
Brain-computer interfaces in control of mechatronic devices and systems
Autorzy:
Mikołajewski, Dariusz
Tomaszewska, Ewa
Karczmarek, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/41205734.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Kazimierza Wielkiego w Bydgoszczy
Tematy:
mechatronika
inżynieria biomedyczna
interfejs mózg-komputer
mechatronics
biomedical engineering
brain-computer interface
Opis:
Interfejsy mózg-komputer ustanowiły przełom w rozwoju współczesnych neuronauk i neurorehabilitacji. Niniejszy artykuł stanowi przegląd części technologii interfejsów mózg-komputer ukierunkowanej na sterowanie urządzeniami i systemami mechatronicznymi. Opisane zostały zarówno podstawowe rozwiązania z obszaru samych interfejsów, jak i przedyskutowane technologie mogące zapewnić sygnały sterujące dla urządzeń mechatronicznych. Pomimo ciągłego rozwoju problematyki wiele kwestii jest nierozwiązanych w zakresie udoskonalenia samych interfejsów oraz sklasyfikowania sygnałów sterujących
Brain-computer interfaces (BCIs) have begun to constitute the another breakthrough in contemporary neuroscience and neurorehabilitation. This paper provides an overview of brain-computer interfaces (BCIs) technology that aims to address the priorities for control of mechatronic devices and systems. We describe basic solutions in the area of BCIs and discuss technologies that may provide command signals for mechatronic devices. Despite continuous development of the topic there still remains room for improvement, including future interfaces and control signal classification enhancements.
Źródło:
Studia i Materiały Informatyki Stosowanej; 2018, 2; 4-9
1689-6300
Pojawia się w:
Studia i Materiały Informatyki Stosowanej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sterowanie modelem pojazdu za pomocą interfejsu mózg-komputer
Control of the car model using brain computer interface
Autorzy:
Derdziński, Marek
Mikołajewski, Dariusz
Łukowski, Janusz
Powiązania:
https://bibliotekanauki.pl/articles/41205746.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Kazimierza Wielkiego w Bydgoszczy
Tematy:
mechatronika
inżynieria biomedyczna
interfejs mózg-komputer
mechatronics
biomedical engineering
brain-computer interface
Opis:
Celem pracy było zbudowanie układu sterowania prostym modelem pojazdu za pomocą interfejsu mózg-komputer (ang. brain computer interface - BCI). Omówiono zasadę działania BCI oraz wykorzystanie BCI w mechatronice, w tym na potrzeby interdyscyplinarnych badań kognitywistycznych (nauk o poznaniu). W dalszej części pracy Autorzy skupili się na opisie modelu, który posłużył do przeprowadzenia badania, ze szczególny uwzględnieniem współdziałania BCI oraz Arduino. Czwarta część pracy dotyczy badania działania zbudowanego rozwiązania technicznego przeprowadzonego na grupie osób w wieku 8-54 lat.
This artilce aims at consctruction of the brain-computer interface (BCI) - based control system of the car model. Article decribes BCI's rules of operation and BCI applications in mechatronics, including interdisciplinary cognitive sciences. Further part of the article is focused on description of the model used in the research, particularly on BCI-Arduino cooperation. The last part of the article shows research on subjects aged 8-54 years concerning BCI use to control car model..
Źródło:
Studia i Materiały Informatyki Stosowanej; 2018, 2; 17-23
1689-6300
Pojawia się w:
Studia i Materiały Informatyki Stosowanej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of the application of brain-computer interfaces of a selected paradigm in everyday life
Analiza zastosowania interfejsów mózg-komputer o wybranym paradygmacie w życiu codziennym
Autorzy:
Mróz, Katarzyna
Plechawska-Wójcik, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/2086223.pdf
Data publikacji:
2022
Wydawca:
Politechnika Lubelska. Instytut Informatyki
Tematy:
brain-computer interface
electroencephalography
motor imagery
interfejs mózg-komputer
elektroencefalografia
wyobrażanie ruchowe
Opis:
The main objective of this paper is to carry out a research on the analysis of the use of brain-computer interface in everyday life. The article presents the method of recording brain activity, electroencephalography, which was used in the study. The brain activity used in the brain-computer interface and the general principle of brain-computer interface design are also described. The performed study allowed to develop an analysis of the obtained results in the matter of evaluating the usability of brain-computer interfaces using motor imagery. As a result of the process of analyzing the results obtained during the research, it was found that each subsequent experiment allowed for obtaining more favourable results than the previous one. The reason for this was the use of an additional training session for the next test person. In the final stage, it was possible to evaluate the usability of the brain-computer interface in everyday life
Głównym celem artykułu jest przeprowadzenie badania nad analizą wykorzystania interfejsu mózg-komputer w życiu codziennym. W artykule przedstawiono metodę rejestrowania aktywności mózgu, elektroencefalografię, która została wykorzystana w badaniu. Opisano również aktywność mózgu wykorzystywaną w interfejsie mózg-komputer oraz ogólną zasadę projektowania interfejsu mózg-komputer. Przeprowadzone badanie pozwoliło na opracowanie analizy uzyskanych wyników w zakresie oceny użyteczności interfejsów mózg-komputer z wykorzystaniem obrazowania motorycznego. W wyniku procesu analizy wyników uzyskanych podczas przeprowadzania badań ustalono, iż każdy następnie zrealizowany eksperyment pozwalał na uzyskanie korzystniejszych wyników od poprzedniego. Powodem tego było zastosowanie dodatkowej sesji treningowej dla kolejnych badanych osób. W końcowym etapie można było ocenić przydatność interfejsu mózg-komputer w życiu codziennym
Źródło:
Journal of Computer Sciences Institute; 2022, 23; 118--122
2544-0764
Pojawia się w:
Journal of Computer Sciences Institute
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generowanie stymulacji świetlnych za pomocą diody LED na potrzeby interfejsu mózg-komputer
Autorzy:
Cieszyński, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/118347.pdf
Data publikacji:
2016
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
aparatura stymulująca
SSVEP
interfejs mózg-komputer
LED
stimulating equipment
brain-computer interface
Opis:
Odpowiedź mózgu na bodziec powtarzany ze stałą częstotliwością (np. migające światło diody LED) nazywana jest potencjałem stanu ustalonego (SSVEP ang. Steady State Visually Evoked Potential). W konsekwencji takiej stymulacji w sygnale EEG (Elektroencefalogram) rejestrowanym znad kory wzrokowej następuje wyraźny wzrost mocy w paśmie częstotliwości odpowiadającym częstotliwości bodźca stymulującego. Posiadając układ stymulujący, wyposażony w migającą z daną częstotliwością diodę LED oraz wykorzystując aparaturę do pomiaru EEG (elektrody pomiarowe umiejscowione na czaszce podmiotu badanego) możliwe jest skonstruowanie interfejsu mózg-komputer (BCI ang. Brain-Computer Interface), który może być z powodzeniem wykorzystany np. jako układ sterujący wózkiem inwalidzkim dla osób niepełnosprawnych. Użycie rozwiązania opartego na diodach LED, przy uwzględnieniu standardowego użytecznego zakresu częstotliwościowego sygnału EEG (5-30Hz), daje około 80 możliwych częstotliwości stymulacji. Stanowi to znaczny zbiór częstotliwości możliwych do wykorzystania na etapie uczenia się interfejsu BCI. Etap ten jest konieczny, aby wybrać charakterystyczne dla badanego podmiotu częstotliwości stymulacji dające jak najsilniejszą odpowiedź SSVEP. W artykule autor przedstawi metodę komunikacji w interfejsie BCI opartą na SSVEP z wykorzystaniem diody LED ze wskazaniem na najbardziej istotne parametry budowy układów stymulacyjnych.
The response of the brain to a stimulus repeated with a constant frequency (eg. flashing LED), is called a Steady State Visually Evoked Potential (SSVEP). As a consequence of the stimulation, the EEG signal (electroencephalogram) recorded from the visual cortex shows a significant power increase in the frequency band corresponding to the stimulus frequency. That means that using a stimulation equipment (with LED flashing with the given frequency) and EEG device recording signals from electrodes placed on the subject’s skull, it is possible to construct the brain-computer interface (BCI). It can be used successfully e.g., as a control system for a wheelchair for disabled people. BCI based on LEDs provides a high number of possible stimulation frequencies. Considering the classic EEG frequency band (5-30 Hz) at least 80 different stimulation frequencies can be delivered by a single LED. This large set of frequencies is used at the BCI learning stage. This stage is necessary in order to select specific stimulation frequencies, which give the strongest SSVEP for a specific subject. In the article the author will present the method of communication in BCI interface based on the SSVEP using LEDs. The most important parameters of the stimulating systems will be indicated.
Źródło:
Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej; 2016, 10; 225-235
1897-7421
Pojawia się w:
Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Interfejs mózg-komputer oraz diagnostyka EEG stanu aktywacji mózgu w treningu sportowym: meta-analiza
Brain-computer interface and diagnostics EEG activation state of the brain in sport training: meta-analysis
Autorzy:
Nawrocka, M.
Powiązania:
https://bibliotekanauki.pl/articles/261663.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Wydział Podstawowych Problemów Techniki. Katedra Inżynierii Biomedycznej
Tematy:
elektroencefalografia
interfejs mózg-komputer
trening sportowy
biofeedback
electroencephalography
brain-computer interface
sport training
Opis:
Praca dotyczy obszaru badań związanych z pomiarami i przetwarzaniem sygnału elektroencefalograficznego oraz bezpośredniej komunikacji aktywacji mózgu z urządzeniem zewnętrznym za pomocą systemów zawierających interfejs mózg-komputer (ang. BCI - brain computer interface) w celu modyfikacji klasycznego podejścia metodycznego w sporcie. Osiąganie wyników sportowych zbliża się do granic przystosowania ustroju ludzkiego. Natomiast poszukiwanie kryteriów i wysokiej wartości diagnostycznej potencjału sportowego oraz określenie tej wartości z pewnością spełni funkcję predykcyjną w szkoleniu sportowym. Badania wskazują na to, że wdrożenie metody sprzężenia zwrotnego EEG do treningu sportowego wpływa na poprawę stanu funkcjonalnego organizmu, a w konsekwencji polepszenie wyników w sporcie.
The paper concerns the research related to the measurement and electroencephalographic signal processing and direct communication of brain with an external device using a system containing a brain-computer interface (BCI) for the modification of the classical methodological approach in sport. Achieving better sports results is approaching the limits of adaptability of the human organism. Establishing reliable criteria and high value diagnostics of sport potential and determination of this value, will be a prediction factor in sports training. The implementation of the EEG biofeedback method in sports training will improve the functional status of the organism, and consequently, may contribute to better sport results.
Źródło:
Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna; 2017, 23, 3; 195-199
1234-5563
Pojawia się w:
Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using brain-computer interface technology as a controller in video games
Zastosowanie technologii interfejsów mózg-komputer jako kontrolera do gier wideo
Autorzy:
Zając, Błażej
Paszkiel, Szczepan
Powiązania:
https://bibliotekanauki.pl/articles/1841328.pdf
Data publikacji:
2020
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
electroencephalography
brain-computer interfaces
EMOTIV EPOC+ NeuroHeadset
video games
elektroencefalografia
interfejs mózg-komputer
gry wideo
Opis:
Nowadays, control in video games is based on the use of a mouse, keyboard and other controllers. A Brain Computer Interface (BCI) is a special interface that allows direct communication between the brain and the appropriate external device. Brain Computer Interface technology can be used forcommercial purposes, for example as a replacement for a keyboard,mouse or other controller. This article presents a method of controlling video games using the EMOTIV EPOC + Neuro Headset as a controller.
W obecnych czasach sterowanie w grach wideo jest oparte na wykorzystaniu myszki, klawiatury oraz innych kontrolerów. Brain-Computer Interface w skrócie BCI to specjalnyinterfejspozwalający na bezpośrednią komunikację międzymózgiem,a odpowiednim urządzeniem zewnętrznym. Technologia Brain-Computer Interface może zostać użyta w celach komercyjnych na przykład jako zamiennik myszki klawiatury lub innego kontrolera. Wartykule przedstawiono sposób sterowania w grach wideo przy pomocy neuro-headsetu EMOTIV EPOC+ jako kontrolera.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2020, 10, 3; 26-31
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Brain-computer interface for mobile devices
Autorzy:
Dobosz, K.
Wittchen, P.
Powiązania:
https://bibliotekanauki.pl/articles/333571.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
brain computer interface
mobile devices
software tool
motor disability
interfejs mózg-komputer
urządzenia mobilne
oprogramowanie
Opis:
The article presents the results of research in controlling the mobile application with the EEG signals and eye blinking. Authors proposed a prototype solution of a brain-computer interface that can be used by people with total motor impairment to control chosen mobile application on their mobile phone. There was a NeuroSky MindWave Mobile device used during experiments. Two software tools for mobile devices were specially implemented. First one helps to analyse the EEG signals and recognize eye blinks, second one - interprets them and executes assigned actions. Different configurations of settings were used during the studies. They included: single blink or double blink, level of focus, period of focus. Experiments results show that a man equipped with a personal EEG sensor and eye blinking detector can remotely touchless use mobile applications installed on smartphones or tablets.
Źródło:
Journal of Medical Informatics & Technologies; 2015, 24; 215-222
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie maszyny wektorów wspierających (SVM) do klasyfikacji sygnału EEG na użytek interfejsu mózg-komputer
Implementation of support vector machine for classification of EEG signal for brain-computer interface
Autorzy:
Kołodziej, M.
Majkowski, A.
Rak, R. J.
Powiązania:
https://bibliotekanauki.pl/articles/155968.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
BCI
interfejs mózg-komputer
EEG
maszyna wektorów wspierających
SVM
brain-computer interface
support vector machine
Opis:
W artykule przedstawiono wykorzystanie maszyny wektorów wspierających (SVM) na użytek interfejsów mózg-komputer (BCI). W opracowanych algorytmach jako cechy sygnału EEG wykorzystano jego wariancję. Przedstawiono wyniki badań związanych z wykorzystaniem sieci SVM jako klasyfikatora. Eksperymenty przeprowadzono przy użyciu różnego rodzaju funkcji jądra.
Implementing communication between man and machine by use of EEG signals is one of the biggest challenges in the signal theory. Such communication could improve the standard of living of people with severe motor disabilities. Some disable persons cannot move, however they can think about moving their arms, legs and this way produce stable motor-related EEG signals. These signals can be used to construct BCI systems. However, the proper interpretation of the EEG signals is a very difficult task. There are three main stages in EEG signal analysis: feature extraction, feature selection and classification. The main aim of the paper is to implement a support vector machine as a classifier for the brain-computer interface. The proposed algorithm uses the EEG signal variance in the frequency range 8-30Hz. Experiments were conducted with use of different kernel functions for the SVM classifier. The best results were achieved for the quadratic polynomial kernel function. The classification error for testing data was 0.13.
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 12, 12; 1546-1548
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
BCI w VR: imersja sposobem na sprawniejsze wykorzystywanie interfejsu mózg-komputer
BCI in VR: an immersive way to make the brain-computer interface more efficient
Autorzy:
Piszcz, Adrianna
Powiązania:
https://bibliotekanauki.pl/articles/41206132.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Kazimierza Wielkiego w Bydgoszczy
Tematy:
BCI
interfejs mózg-komputer
EEG
VR
rzeczywistość wirtualna
rysowanie
brain-computer interface
virtual reality
painting
Opis:
Celem eksperymentów było zbadanie czy rzeczywistość wirtualna usprawnia korzystanie z interfejsu mózg-komputer. Do badania wykorzystano autorski system informatyczny, który umożliwia rysowanie kształtów na ekranie komputera. Przygotowane stanowisko badawcze składa się z komputera z niezbędnym oprogramowaniem, z mobilnych gogli wirtualnej rzeczywistości Esperanza EMV300 ze smartfonem Samsung Galaxy A40 oraz interfejsu mózg-komputer Emotiv Epoc. Wykazano, że imersja pozwala zwiększyć poziom koncentracji i sprawniej korzystać z interfejsu mózg-komputer. Taki rodzaj zanurzenia w rzeczywistość wirtualną może zapoczątkować całą serię aplikacji obsługiwanych w sposób intuicyjny, za pomocą komend myślowych, w wykreowanym wirtualnym świecie.
The purpose of the experiments was to investigate whether virtual reality improves the use of the brain-computer interface. The study used a custom computer system that allows drawing shapes on the computer screen. The prepared test stand consists of a computer with the necessary software, Esperanza EMV300 mobile virtual reality goggles with a Samsung Galaxy A40 smartphone and Emotiv Epoc braincomputer interface. It was shown that immersion allows to increase the level of concentration and use the brain-computer interface more efficiently. This kind of immersion in virtual reality could initiate a whole series of applications operated intuitively, via thought commands, in a created virtual world.
Źródło:
Studia i Materiały Informatyki Stosowanej; 2021, 1; 5-10
1689-6300
Pojawia się w:
Studia i Materiały Informatyki Stosowanej
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies