Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "boosted trees" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Predictive regression models of monthly seismic energy emissions induced by longwall mining
Regresyjne modele predykcyjne miesięcznej emisji energii sejsmicznej indukowanej eksploatacją w ścianie
Autorzy:
Jakubowski, J.
Tajduś, A.
Powiązania:
https://bibliotekanauki.pl/articles/219968.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
sejsmiczność indukowana
wstrząsy górnicze
zagrożenie tąpaniami
eksploatacja ścianowa
drzewa wzmacniane
sieci neuronowe
data mining
modele regresyjne
modele predykcyjne
induced seismicity
mining tremors
rockburst hazard
longwall mining
boosted trees
neural networks
regression models
predictive models
Opis:
This article presents the development and validation of predictive regression models of longwall mining-induced seismicity, based on observations in 63 longwalls, in 12 seams, in the Bielszowice colliery in the Upper Silesian Coal Basin, which took place between 1992 and 2012. A predicted variable is the logarithm of the monthly sum of seismic energy induced in a longwall area. The set of predictors include seven quantitative and qualitative variables describing some mining and geological conditions and earlier seismicity in longwalls. Two machine learning methods have been used to develop the models: boosted regression trees and neural networks. Two types of model validation have been applied: on a random validation sample and on a time-based validation sample. The set of a few selected variables enabled nonlinear regression models to be built which gave relatively small prediction errors, taking the complex and strongly stochastic nature of the phenomenon into account. The article presents both the models of periodic forecasting for the following month as well as long-term forecasting.
W artykule przedstawiono budowę i walidację predykcyjnych modeli regresyjnych sejsmiczności indukowanej eksploatacją w ścianie, opartych na obserwacjach w 63 ścianach kopalni Bielszowice prowadzonych w 12 pokładach w latach 1992-2012. Zmienna prognozowaną jest logarytm miesięcznej sumy energii sejsmicznej wstrząsów w ścianie. Zestaw predyktorów składa się z siedmiu zmiennych ilościowych i jakościowych opisujących wybrane czynniki górnicze i geologiczne w ścianach. Do budowy modeli zastosowano dwie metody uczenia się maszyn: drzewa wzmacniane oraz sieci neuronowe. Zastosowano dwa rodzaje walidacji modeli: na losowej próbie walidacyjnej oraz na czasowej próbie walidacyjnej. Zestaw kilku wybranych zmiennych pozwolił na zbudowanie nieliniowych modeli regresyjnych, które, biorąc pod uwagę złożoną i silnie stochastyczną naturę zjawiska, dają względnie małe błędy pro gnozy. W artykule przedstawiono zarówno modele do prognozy okresowej na kolejny miesiąc jak i do prognozy długoterminowej.
Źródło:
Archives of Mining Sciences; 2014, 59, 3; 705-720
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predykcyjny model dobowej emisji energii sejsmicznej indukowanej eksploatacją górniczą
Predictive model of the daily release of seismic energy induced by mining
Autorzy:
Jakubowski, J.
Lenart, Ł.
Ożóg, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/166220.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Górnictwa
Tematy:
sejsmiczność indukowana
wstrząsy górnicze
hazard sejsmiczny
zagrożenie tąpaniami
drzewa wzmacniane
sieci neuronowe
regresja logistyczna
modele prognostyczne
modele klasyfikacyjne
induced seismicity
mining tremors
seismic hazard
rockburst hazard
data mining
boosted trees
neural networks
logistic regression
predictive model
classification model
Opis:
W artykule przedstawiono budowę i ocenę predykcyjnego modelu klasyfikacyjnego dobowej emisji energii sejsmicznej indukowanej eksploatacją ścianową węgla. Model jest oparty na danych z katalogu wstrząsów i podstawowych danych o wydobyciu i ścianach eksploatowanych w partii XVI kopalni Piast w okresie od lipca 1987 do marca 2011. Zmienną prognozowaną jest dwustanowa zmienna określająca wystąpienie dobowej sumy energii sejsmicznej wstrząsów w rejonie ściany większej lub równej wartości progowej 10/5 J. Zastosowano trzy metody analityczne w schemacie data mining: regresję logistyczną, sieci neuronowe i drzewa wzmacniane. Jako najlepszy do celów prognozy wybrano model drzew wzmacnianych. Wyniki na zbiorze walidacyjnym pokazały jego dobrą zdolność predykcyjną, co zachęca do dalszych badań.
This paper presents the design and evaluation of the classification predictive model of daily seismic activity induced by longwall mining. The model combines seismic catalog data, output volume and basic characteristics of the longwall faces in sector XVI of the Piast coal mine over the period of July 1987 to March 2011. The predicted variable defines the occurrence of a daily sum of seismic energy released nearby the longwall, that is greater than or equal to the threshold value of 10/5 J. Machine learning and statistical methods were applied, namely neural networks, stochastic gradient boosted trees and logistic regression. The design and evaluation of the classification predictive models were presented. The boosted tree model appeared to meet the prediction quality criteria best. The results of the model evaluation show its promising predictive capability.
Źródło:
Przegląd Górniczy; 2014, 70, 3; 18-25
0033-216X
Pojawia się w:
Przegląd Górniczy
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies