Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kowalczyk, Barbara" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
An Analysis of the Properties of a Newly Proposed Non‑Randomised Response Technique
Analiza własności nowo zaproponowanej techniki nierandomizowanych odpowiedzi
Autorzy:
Kowalczyk, Barbara
Powiązania:
https://bibliotekanauki.pl/articles/2154147.pdf
Data publikacji:
2022-07-12
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
ankietowanie pośrednie
pytania drażliwe
techniki nierandomizowanych odpowiedzi
model krzyżowy
estymacja NW
stopień ochrony prywatności
indirect questioning
sensitive questions
non‑randomised response techniques
crosswise model
ML estimation
degree of privacy protection
Opis:
Non‑randomised response (NRR) techniques are modern and constantly evolving methods intended for dealing with sensitive topics in surveys, such as tax evasion, black market, corruption etc. The paper introduces a new NRR technique that can be seen as a generalisation of the well‑known crosswise model (CM). In the paper, methodology of the new generalised crosswise model (GCM) is presented and the maximum likelihood estimator of the unknown population sensitive proportion is obtained. Also, the problem of privacy protection is discussed. The properties of the newly proposed GCM are examined. Then the GCM is compared with the traditional CM. The paper shows that mathematically the CM is a special case of the newly proposed generalised CM and that this generalisation has high practical relevance.
Techniki nierandomizowanych odpowiedzi to nowoczesne i stale rozwijające się metody przeznaczone do radzenia sobie z tematami drażliwymi, takimi jak oszustwa podatkowe, czarny rynek, korupcja itp. W artykule zaproponowano nową technikę nierandomizowanych odpowiedzi, którą można traktować jako uogólnienie znanego modelu krzyżowego. Przedstawiono metodykę nowego uogólnionego modelu krzyżowego oraz podano estymator największej wiarygodności dla nieznanej populacyjnej frakcji cechy drażliwej. Omówiono również problem ochrony prywatności. Przeanalizowano własności nowo zaproponowanego modelu, a następnie porównano go z tradycyjnym modelem krzyżowym. Pokazano, że klasyczny model krzyżowy jest specjalnym przypadkiem zaproponowanego modelu uogólnionego. Wykazano również, że to uogólnienie ma duże znaczenie dla praktyki.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2022, 1, 358; 1-13
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimal Allocation of the Sample in the Poisson Item Count Technique
Optymalna alokacja próby w badaniu cechy drażliwej
Autorzy:
Bernardelli, Michał
Kowalczyk, Barbara
Powiązania:
https://bibliotekanauki.pl/articles/660031.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
alokacja optymalna
zmienna ukryta
algorytm EM
cecha drażliwa
pytania pośrednie
eksperyment z listą
optimal allocation
latent variable
EM algorithm
sensitive question
indirect questioning
Poisson item count technique
Opis:
Pośrednie metody ankietowania stanowią podstawowe narzędzie stosowane w przypadku pytań drażliwych. Artykuł nawiązuje do nowej, pośredniej metody zaproponowanej w pracy Tiana i wsp. (2014) i dotyczy optymalnej alokacji próby między grupę badaną i kontrolną. W przypadku gdy alokacji dokonuje się w oparciu o estymatory metodą momentów, rozwiązanie optymalne nie nastręcza trudności i zostało podane w pracy Tiana i wsp. (2014). Jednak to estymacja metodą największej wiarogodności ma lepsze własności, w związku z czym wyznaczenie alokacji optymalnej na jej podstawie jest zadaniem, którego rozwiązanie wydaje się mieć większe znaczenie praktyczne. Zadanie to nie jest trywialne, gdyż w przypadku omawianej metody pośredniej drażliwa zmienna badana ma charakter ukryty i jest zmienną nieobserwowalną. Wzór explicite na wariancję estymatora największej wiarogodności nieznanej frakcji cechy drażliwej nie jest dostępny, a sam estymator wyznaczyć można, używając odpowiednich algorytmów numerycznych. Do określenia optymalnej alokacji próby w oparciu o estymatory NW wykorzystane zostały symulacje Monte Carlo oraz iteracyjny algorytm EM
Indirect methods of questioning are of utmost importance when dealing with sensitive questions. This paper refers to the new indirect method introduced by Tian et al. (2014) and examines the optimal allocation of the sample to control and treatment groups. If determining the optimal allocation is based on the variance formula for the method of moments (difference in means) estimator of the sensitive proportion, the solution is quite straightforward and was given in Tian et al. (2014). However, maximum likelihood (ML) estimation is known from much better properties, therefore determining the optimal allocation based on ML estimators has more practical importance. This problem is nontrivial because in the Poisson item count technique the study sensitive variable is a latent one and is not directly observable. Thus ML estimation is carried out by using the expectation‑maximisation (EM) algorithm and therefore an explicit analytical formula for the variance of the ML estimator of the sensitive proportion is not obtained. To determine the optimal allocation of the sample based on ML estimation, comprehensive Monte Carlo simulations and the EM algorithm have been employed.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2018, 3, 335; 35-47
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies