Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "strong equality" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
A note on the independent Roman domination in unicyclic graphs
Autorzy:
Chellali, M.
Rad, N. J.
Powiązania:
https://bibliotekanauki.pl/articles/255989.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Roman domination
independent Roman domination
strong equality
Opis:
A Roman dominating function (RDF) on a graph G= (V, E) is a function ƒ : V → {0, 1, 2} satisfying the condition that every vertex u for which ƒ(u) = 0 is adjacent to at least one vertex v for which ƒ(v)=2. The weight of an RDF is the value [formula]. An RDF ƒ in a graph G is independent if no two vertices assigned positive values are adjacent. The Roman domination number ΥR (G) (respectively, the independent Roman domination number ΥR(G) is the minimum weight of an RDF (respectively, independent RDF) on G. We say that ΥR(G) strongly equals iR(G), denoted by ΥR(G) ≡ iR(G), if every RDF on G of minimum weight is independent. In this note we characterize all unicyclic graphs G with ΥR(G) ≡ iR(G).
Źródło:
Opuscula Mathematica; 2012, 32, 4; 715-718
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Strong Equality Between the Roman Domination and Independent Roman Domination Numbers in Trees
Autorzy:
Chellali, Mustapha
Rad, Nader Jafari
Powiązania:
https://bibliotekanauki.pl/articles/30146596.pdf
Data publikacji:
2013-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Roman domination
independent Roman domination
strong equality
trees
Opis:
A Roman dominating function (RDF) on a graph $G = (V,E)$ is a function $ f : V \rightarrow {0, 1, 2} $ satisfying the condition that every vertex $ u $ for which $ f(u) = 0 $ is adjacent to at least one vertex $v$ for which $f(v) = 2$. The weight of an RDF is the value $ f(V (G)) = \Sigma_{u \in V (G) } f(u) $. An RDF $f$ in a graph $G$ is independent if no two vertices assigned positive values are adjacent. The Roman domination number $ \gamma_R (G) $ (respectively, the independent Roman domination number $ i_R(G) $) is the minimum weight of an RDF (respectively, independent RDF) on $G$. We say that $ \gamma_R(G)$ strongly equals $ i_R(G)$, denoted by $ \gamma_R (G) \equiv i_R(G)$, if every RDF on $G$ of minimum weight is independent. In this paper we provide a constructive characterization of trees $T$ with $ \gamma_R(T) \equiv i_R(T) $.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 2; 337-346
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies