Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bociaga, D." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Srebro jako dodatek w zastosowaniach biologicznych
Additions of silver in biomedical application
Autorzy:
Bociąga, D.
Czerniak-Reczulska, M.
Powiązania:
https://bibliotekanauki.pl/articles/284964.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
srebro
implanty
biomateriały
silver
implants
biomaterials
Opis:
Srebro ze swych antyseptycznych właściwości znane było już od starożytności. Po odkryciu antybiotyków (penicyliny w 1929 r.)poszło w zapomnienie, przegrywając z silnie rozwijającą się farmakologią. Powrót srebra nastąpił we wczesnych latach 60-tych XX wieku, a obecnie srebro jako środek bakteriobójczy przeżywa swój prawdziwy„renesans”. Srebro swoją mocną pozycję zawdzięcza temu, że atakuje komórkę bakterii na wielu płaszczyznach, m.in.: atakuje jądro bakterii – wiąże się z bakteryjnym DNA uszkadzając w ten sposób replikację komórek bakterii, powoduje zaburzenie przemieszczania się elektronów i tym samym ogranicza proces wytwarzania przez bakterie energii - proliferacja (rozrost) bakterii zostaje zahamowana, łączy się z błoną komórkową bakterii, co zakłóca jej funkcję, blokuje enzymy, tym samym powodując przerwanie procesów fizjologicznych. Obok zdolności zwalczania drobnoustrojów srebro może mieć jednak również toksyczne działanie na komórki człowieka. Jak wskazuje Schierholz i współaut. (1998) bezpieczeństwo stosowania srebra jest ograniczone. Wg nich koncentracja jonów srebra w płynach ustrojowych powyżej 10 mg/l może być toksyczna dla pewnych makromolekuł obecnych w ludzkim organizmie. Bosetti i współaut. (2002) w swoich badaniach dowodzą braku toksycznego wpływu srebra na komórki ludzkie (tj. limfocyty, fibroblasty i osteoblasty), a nawet twierdzą, że metal ten pobudza komórki kościotwórcze (osteoblasty) do wzmożonej aktywności. Argument ten dodatkowo budzi zainteresowanie srebrem jako czynnikiem nadającym się do użytku medycznego. Biorąc pod uwagę takie wyniki sprzymierzeńca w srebrze upatruje m.in. ortopedia (badania in vitro przeprowadzone przez Bosetti i współaut. (2002) dowodzą zwiększonej skuteczności implantów zawierających srebro, stosowanych przy złamaniach czy też stłuczeniach). Rozpatrując za i przeciw stosowaniu srebra jako środka działającego bakteriobójczo lub/i bakteriostatycznie należy wziąć pod uwagę, iż efekt toksyczności metali (w tym również srebra) zależy od formy w jakiej są one dostępne dla komórki mikroorganizmu, czy jest to jon czy postać organiczna (Ennever 1994).Realizowane badania mają na celu uzyskanie odpowiedzi na pytanie jak wykorzystać właściwości srebra do zastosowań biomedycznych przy jednoczesnym uniknięciu jego toksyczności. Wstępne badania pokazują, iż powierzchnie pokryte cienką warstwą srebra silnie związaną z substratem mogą ograniczać toksyczność srebra w środowisku tkankowym przy zachowaniu aktywności antybakteryjnej.
Silver had been known since antiquity for its antiseptic properties. After the discovery of antibiotics (penicillin in 1929) felt into oblivion, losing to the strong growth of pharmacology. Return of silver occurred in the early 60s of the twentieth century, and now silver as a bactericide is undergoing a big “renaissance”. Silver its strong position has thanks to the fact that attacks the bacteria cell on multiple levels. It attacks the nucleus of bacteria- is associated with bacterial DNA, thus damaging the bacterial cell replication, causes a movement disorder of electrons and thereby reduces the process of energy by the bacteria - proliferation (growth) of bacteria is inhibited, combines with the cell membrane of bacteria, which disturbs with its function, blocks the enzymes, thus causing the disruption of physiological processes. Besides the ability to fight against microbial, silver can also have toxic effects on human cells. As indicated by Schierholz et al. (1998) the safety of silver is limited. According to them, the concentration of silver ions in body fluids of more than 10 mg /l maybe toxic to certain macromolecules present in the human body. Bosetti et al. (2002) in their studies have shown no toxicity of silver to human cells (eg lymphocytes, fibroblasts and osteoblasts), and even claim that this metal stimulates cells (osteoblasts) to increased activity. This argument makes that raises interest in silver as a particle suitable for medical use. Given these results orthopedics sees silver as an ally (in vitro studies conducted by Bosetti et al. (2002) demonstrate the increased effectiveness of silver-containing implants used for fractures or contusions). Considering the pros and cons of using silver as an antibacterial agent acting and /or bacteriostatic should take into account that the effect of toxic metals (including silver) depends on the form in which they are available to the cells of the microorganism, whether it is a form of ion or organic (Ennever 1994). Studies are carried out to obtain answers to the question of how to use the properties of silver for biomedical applications while avoiding its toxicity. Preliminary studies show that surfaces coated with a thin layer of silver strongly associated with the substrate can reduce the toxicity of silver in the tissue environment, while maintaining antibacterial activity.
Źródło:
Engineering of Biomaterials; 2011, 14, no. 109-111 spec. iss.; 82
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of corrosion resistance of magnetron sputtered doped DLC coatings with use of salt spray technique
Autorzy:
Jastrzębski, K.
Paradowska, J.
Jastrzębska, A.
Bociąga, D.
Powiązania:
https://bibliotekanauki.pl/articles/286076.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
implants
corrosion
DLC coatings
Źródło:
Engineering of Biomaterials; 2016, 19, 138; 104
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Biological evaluation and surface properties of Ti-DLC coatings deposited by magnetron sputtering
Autorzy:
Olejnik, A
Sobczyk-Guzenda, A.
Świątek, L.
Jastrzębski, K.
Bociąga, D.
Powiązania:
https://bibliotekanauki.pl/articles/285544.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
DLC coatings
magnetron sputtering
implants
Opis:
During the last few decades, a growing demand for medical implants may be observed on the market. This is a consequence of both the increasing number of people suffering from disabilities as well as technological development. As a result of growing number of trauma injuries, orthopaedic and bone implants are one of the branches of the medical device industry showing the fastest growth opportunities. However, the commonly applied metallic implants do not exhibit total chemical stability in human body environment and hence, possess relatively poor surface properties [1]. For that reason, even the corrosion resistant metals may release degradation products and cause adverse biological response1. Consequently, surface modifications of metallic implants which enhance the biological response of the human body towards the surface of the implant are recently gaining a lot of interest. One of the most extensively studied solutions include the application of diamond-like carbon (DLC) coatings which exhibit a combination of highly desirable properties in the context of biomedical applications [2]. Furthermore, the properties of DLC coatings, such as cell behaviour and body reaction towards its surface, may be further improved by doping with various elements [3]. Therefore, the modified DLC coatings are nowadays extensively researched in terms of their possible medical applications. In the case of orthopaedic implants the enhancement of the osseointegration process is highly desirable in order to assure the proper bone-healing, what according to the literature may be achieved by the addition of titanium (Ti). The incorporation of Ti into the DLC matrix does not only promote the bone marrow cells proliferation, but also simultaneously reduces the activity of the osteoclast-like cells as indicated by Shroeder et al. [4]. Similarly, also Thorwarth et al. demonstrated that carbon coatings containing TiO exhibit promising results concerning the proliferation and differentiation of human osteoblasts [5]. Nevertheless, in spite of the numerous studies considering the biological behaviour of Ti-incorporated DLC coatings, there is lack of conclusive reports considering the biological applications of coatings deposited by a magnetron sputtering technique. Taking this into consideration, a complex biological evaluation of Ti-DLC coatings followed by their surface characteristics was performed, since surface properties have a direct role in different post-implantation reactions including protein adsorption and cell proliferation [1]. The examined coatings were deposited on two commonly applied metallic biomaterials (AISI 316 LVM steel and Ti6Al7Nb alloy) using a magnetron sputtering technique. The surface characteristics of the deposited Ti-DLC coatings included the analysis of surface morphology (SEM), chemical composition and structure (XPS, FTIR) as well as surface wettability and surface free energy (sessile drop technique and Owens-Wendt’s model). The biological assessment of the deposited coatings was based on two complementary cell proliferation and viability assays (LIVE/DEAD and XTT test) performed with the use of two different cell lines, i.e. endothelial cells line EA.hy926 and osteoblast-like cells line Saos-2. The obtained results allowed to check the influence of titanium on the biological response of two different cell lines towards the Ti-DLC coatings deposited using magnetron sputtering method as well as to correlate the obtained results with the surface properties of the investigated coatings.
Źródło:
Engineering of Biomaterials; 2016, 19, 138; 105
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Control of the biological response to metallic biomaterials through application of the DLC coatings with dopants
Autorzy:
Bociąga, D.
Olejnik, A.
Jastrzębski, K.
Jędrzejczak, A.
Świątek, L.
Grabarczyk, J.
Sobczyk-Guzenda, A.
Kamińska, M.
Jakubowski, W.
Komorowski, P.
Niedzielski, P.
Powiązania:
https://bibliotekanauki.pl/articles/285750.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
implants
biomaterials
dopants
Źródło:
Engineering of Biomaterials; 2016, 19, 138; 94
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies