- Tytuł:
- Assessment of gold with titanium alloy weldability in conditions of a dental technique laboratory
- Autorzy:
-
Jania, G.
Żmudzki, J.
Topolska, S. - Powiązania:
- https://bibliotekanauki.pl/articles/24200598.pdf
- Data publikacji:
- 2022
- Wydawca:
- Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
- Tematy:
-
titanium alloy
gold
laser welding
prosthetic
implant denture
microstructure
stop tytanu
złoto
spawanie laserowe
protetyka
proteza implantu
mikrostruktura - Opis:
- Purpose: In dental practice, there is necessary to weld gold with titanium under the conditions of a dental technique laboratory, which is difficult. The aim was to assess the weldability of pure gold with the titanium alloy Ti6Al4V using a prosthetic laser welding machine. Design/methodology/approach: Gold wire in a diameter of 0.4 mm made with the use of a jewellery drawbar (GOLDPORT, Szczecin, Poland) was welded to a titanium alloy Ti6Al4V substrate of dental implant abutment screw (MegaGen). Dental laser welding parameters (Bego Laser Star T plus) were 230 V; 6.5 ms; 2.5 Hz; laser spot 0.3 mm, and argon blow. Samples were included in resin, ground (500-4000 SiC), polished (Al2O3 suspension) and etched (Kroll solution) per 20 s before observation under a light microscope. Findings: There were well-welded and poorly joined zones. The discontinuities and voids there were not visible or sparse next to the initial weld point. Dendritic structure at well-welded remelting zones and two-phase microstructure of titanium and Ti3Au phase were found. The heat-affected zone was about of 20 microns. Research limitations/implications: Light microscopy was used, and precise phase identification required further investigations. Weld strength assessment requires further micro-hardness and load-bearing ability tests. Weldability concerns the model system with pure gold. Practical implications: In the case of elements with dimensions below 0.4 mm, the use of a laser with a smaller spot should be considered for better control of the remelting zone and mechanical positioning of the elements in order to stabilize and avoid discontinuities and voids. Originality/value: Prosthetic laser welding with a laser spot about of 0.3 mm allows to obtain well-welded parts of 0.3 mm in diameter under stable stitching conditions and higher than 0.4 mm in dimensions.
- Źródło:
-
Archives of Materials Science and Engineering; 2022, 118, 1; 36--41
1897-2764 - Pojawia się w:
- Archives of Materials Science and Engineering
- Dostawca treści:
- Biblioteka Nauki