Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "klasyfikacja obrazu" wg kryterium: Wszystkie pola


Wyświetlanie 1-5 z 5
Tytuł:
Grain size determination and classification using adaptive image segmentation with grain shape information for milling quality evaluation
Określenie rozmiaru ziarna i klasyfikacja z użyciem adaptacyjnej segmentacji obrazu i informacji o kształcie dla oceny jakości mielenia
Autorzy:
Budzan, S.
Pawełczyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/328384.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
grain classification
particle analysis
image segmentation
feature extraction
klasyfikacja ziaren
analiza
wielkość ziaren
segmentacja obrazów
ekstrakcja cech
Opis:
In this paper, authors described methods of material granularity evaluation and a novel method for grain size determination with inline electromagnetic mill device diagnostics. The milling process quality evaluation can be carried out with vibration measurements, analysis of the milling material images or well-known screening machines. The method proposed in this paper is developed to the online examination of the milled product during the milling process using real-time digital images. In this paper, authors concentrated their work on copper ore milling process. Determination of the total number of the grain, the size of each grain, also the classification of the grains are the main goal of the developed method. In the proposed method the vision camera with lightning mounted at two assumed angles has been used. The detection of the grains has been based on an adaptive segmentation algorithm, improved with distance transform to enhance grains detection. The information about particles shape and context is used to optimize the grain classification process in the next step. The final classification is based on the rule-based method with defined particle shape and size parameters.
W pracy autorzy opisali metody oceny uziarnienia materiału i nową metodę określania wielkości ziaren z jednoczesną diagnostyką pracy młyna elektromagnetycznego. Ocena jakości mielenia może być realizowana na kilka sposobów, tj. poprzez pomiar drgań, analizę obrazów materiału zmielonego, lub wykorzystanie matryc przesiewowych. Proces mielenia jest procesem obciążonym znacznym zużyciem energii, dlatego proces diagnostyki powinien być wykonywany z dużą efektywnością. Metoda zaproponowana w niniejszym artykule opiera się na badaniu mielonego produktu podczas procesu mielenia przy użyciu analizy obrazów cyfrowych w czasie rzeczywistym. Głównym celem opracowanej metody jest określenie całkowitej liczby ziaren, wielkości ziaren, jak i klasyfikacja ziaren. W zaproponowanej metodzie wykorzystano akwizycję obrazów z kamery przy oświetlaniu badanych próbek pod kątem, co pozwala zwiększyć liczbę wykrywanych ziaren. Detekcja ziaren bazuje na metodzie segmentacji adaptacyjnej rozszerzonej o analizę map odległościowych w celu poprawienia jakości i liczby wykrytych ziaren. Informacje na temat kształtu ziaren są wykorzystywane w celu optymalizacji procesu klasyfikacji ziaren. Ostateczna klasyfikacja opiera się na metodzie bazującej na regułach, w których określono zależności dla różnych parametrów kształtu i rozmiaru ziaren.
Źródło:
Diagnostyka; 2018, 19, 1; 41-48
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computer-aided diagnosis of breast cancer using gaussian mixture cytological image segmentation
Autorzy:
Kowal, M.
Filipczuk, P.
Obuchowicz, A.
Korbicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/333385.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
segmentacja obrazu
klasyfikacja
rak piersi
image segmentation
classification
breast cancer
Opis:
This paper presents an automatic computer system to breast cancer diagnosis. System was designed to distinguish benign from malignant tumors based on fine needle biopsy microscope images. Studies conducted focus on two different problems, the first concern the extraction of morphometric and colorimetric parameters of nuclei from cytological images and the other concentrate on breast cancer classification. In order to extract the nuclei features, segmentation procedure that integrates results of adaptive thresholding and Gaussian mixture clustering was implemented. Next, tumors were classified using four different classification methods: k–nearest neighbors, naive Bayes, decision trees and classifiers ensemble. Diagnostic accuracy obtained for conducted experiments varies according to different classification methods and fluctuates up to 98% for quasi optimal subset of features. All computational experiments were carried out using microscope images collected from 25 benign and 25 malignant lesions cases.
Źródło:
Journal of Medical Informatics & Technologies; 2011, 17; 257-262
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie analizy wielkości i kształtu w klasyfikacji użytków zielonych na zdjęciach Landsat ETM+
The application of the size and shape analysis in meadow classification on Landsat ETM+ images
Autorzy:
Kosiński, K.
Hoffmann-Niedek, A.
Powiązania:
https://bibliotekanauki.pl/articles/131094.pdf
Data publikacji:
2006
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
segmentacja obrazu
kształt
wielkość
klasyfikacja
użytkowanie łąk
image segmentation
shape
size
classification
grassland utilisation
Opis:
W naturalnym procesie widzenia z obrazu wydzielane są względnie jednorodne segmenty (Laliberte et al., 2004). Analizowane są takie cechy segmentów, jak kolor, tekstura, częstotliwość przestrzenna, położenie, wielkość, kształt, orientacja, ruch, efekt stereo (Zipser, Lamme, Shiller, 1996; Bach M., Meigen T., 1999; Jacob P., 2003). Znaczenie koloru w wizualnej interpretacji użytków zielonych na zdjęciach Landsat ETM+ można ocenić na podstawie analizy porównawczej składowych barwnych segmentów obrazu. Analiza barwna kompleksów krajobrazowo-roślinnych wydzielonych na mapie satelitarnej doliny Luciąży pozwala wyróżnić cztery kategorie użytków zielonych (Kosiński, 2005). Celem pracy jest określenie znaczenia wielkości i kształtu kompleksów w interpretacji użytków zielonych. Praca jest kontynuacją badań w dolinie Luciąży na Równinie Piotrkowskiej. Kompleksy krajobrazowo-roślinne (jednostki geobotaniczne w randze przestrzennej uroczyska) wydzielano na kompozycji dwóch zdjęć Landsat ETM+. Do delimitacji kompleksów zastosowano interaktywne grupowanie pikseli metodą Region Growing. Analiza wielkości i kształtu wydzielonych w ten sposób segmentów obrazu pozwala odróżnić łąki użytkowane na siedliskach świeżych od pozostałych użytków zielonych, roślinności darniowej i muraw. Wg dobranych empirycznie kryteriów jedenaście spośród trzynastu badanych kompleksów tego typu było prawidłowo sklasyfikowanych. Spośród pozostałych 39 kompleksów użytków zielonych 37 zostało zakwalifikowanych prawidłowo. Połączenie wyników klasyfikacji wg składowych barwnych z klasyfikacją wg wielkości i kształtu pozwala dobrać parametry klasyfikacji pozwalającej wyeliminować błędy operatora w klasyfikacji łąk użytkowanych na siedliskach świeżych. Wyniki wymagają weryfikacji na szerszym materiale, w szczególności rozszerzenia badań na inne mezoregiony.
Image processing during the human vision process tends to generalize images into homogenous areas. When interpreting grasslands on aerial photos and satellite images, image segments are understood as quasi-homogeneous vegetation units: what looks similar in a remotely sensed image is assumed to be similar in nature as well. Image segments are distinct due to a number of cues, including: color, texture, spatial frequency, contrast, size, shape, location, orientation, motion and stereo effect. It was found that four classes of meadow landscape-vegetation complexes may be distinguished based on colour components of the composition of two Landsat ETM+ images. Landscape-vegetation complexes are small geobotanic units corresponding to the nanochore level of physico-geographical units. The aim of this article was to find additional cues useful for meadow interpretation on satellite images. The hypothesis was that it was possible to employ size and shape factors in interpreting grasslands areas. Length, perimeter and area were measured for 52 segments. Classification parameters were adjusted in an empirical manner. Two indexes were produced: a stretch index and a size index calculated based on the three factors. Both indexes are required for identification of fresh meadows in use (complexes of U type), in opposition to other categories of grasslands. 13 U-type landscape--vegetation complexes were found during terrain research. Among them, 11 were correctly classified. 2 complexes of other types were incorrectly classified as U-type. Size and shape analysis appears to be an additional criterion in grassland interpretation.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2006, 16; 331-339
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification and detection of skin disease based on machine learning and image processing evolutionary models
Autorzy:
Bordoloi, Dibyahash
Singh, Vijay
Kaliyaperumal, Karthikeyan
Ritonga, Mahyudin
Jawarneh, Malik
Kassanuk, Thanwamas
Quiñonez-Choquecota, Jose
Powiązania:
https://bibliotekanauki.pl/articles/38700501.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
skin disorder
machine learning
classification
image enhancement
image segmentation
disease detection
schorzenie skóry
nauczanie maszynowe
klasyfikacja
ulepszenie obrazu
segmentacja obrazów
wykrywanie choroby
Opis:
Skin disorders, a prevalent cause of illnesses, may be identified by studying their physical structure and history of the condition. Currently, skin diseases are diagnosed using invasive procedures such as clinical examination and histology. The examinations are quite effective and beneficial. This paper describes an evolutionary model for skin disease classification and detection based on machine learning and image processing. This model integrates image preprocessing, image augmentation, segmentation, and machine learning algorithms. The experimental investigation makes use of a dermatology data set. The model employs the machine learning methods: the support vector machine (SVM), the k-nearest neighbors (KNN), and random forest algorithms for image categorization and detection. This suggested methodology is beneficial for the accurate identification of skin disease using image analysis. The SVM algorithm achieved an accuracy of 98.8%. The KNN algorithm achieved a sensitivity of 91%. The specificity of KNN was 99%.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 2; 247-256
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Determination of the number of trees in the Bory Tucholskie National Park using crown delineation of the canopy height models derived from aerial photos matching and airborne laser scanning data
Określanie liczby drzew w Parku Narodowym Bory Tucholskie metodą segmentacji koron na modelach wysokościowych pochodzących z dopasowania zdjęć lotniczych oraz lotniczego skanownia laserowego
Autorzy:
Wężyk, P.
Hawryło, P.
Szostak, M.
Powiązania:
https://bibliotekanauki.pl/articles/130706.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
image segmentation
object classification
point clouds
airborne laser scanning
National Park
Bory Tucholskie
segmentacja obrazu
klasyfikacja obiektowa
chmury punktów
lotnicze skanowanie laserowe
Park Narodowy
Opis:
In recent years the term "precise forestry" has been used more and more often, referring to a modern and sustainable model of forest management. Functioning of such management of wood biomass resources is based, among others, on precisely defined and log-term monitored selected forest taxation parameters of single trees and whole forest stands based on modern geoinformation technologies, including Airborne Laser Scanning (ALS) and digital photogrammetry. The purpose of the work was the analysis of the usefulness of the CHM (Canopy Height Model) generated from the image-based point cloud or ALS technology to define the number of trees using the method of the segmentation of single Scots pine (Pinus sylvestris L.) crowns. The study was carried out in the Scots pine stands located in the Bory Tucholskie National Park (Poland). Due to the intentional lack of certain silviculture treatments, over the recent decades, these forest stands have been characterized by relatively high tree density, compared to managed forests. The CHM was generated from digital airborne photos (CIR composition; GSD 0.15 m) and on the other hand - from the ALS point clouds (4 points/m2 ; ISOK project). To generate point clouds from airborne photos using stereomatching method, the PhotoScan Professional (Agisoft) software was applied. The CHM coming from the Image-Based Point Cloud (CHM_IPC; GSD: 0.30 m) and ALS data (CHM_ALS; GSD: 0.75 m) were generated using FUSION (USDA Forest Service) software. The segmentation of tree crowns was carried out in eCognition Developer (TRIMBLE GeoSpatial) software. Apart from height models, also spectral information was used (so-called true CIR orthophotomaps; GSD: 0.3 and 0.75 m). To assess the accuracy of the obtained results, the ground truth data from 248 reference areas were used. The carried out analyses showed that in forest stands of younger age classes (< 120 years) better results were achieved applying the method of image matching (CHM_IPC), while in the case of older stands (> 120 years) the accuracy of the detection rate of tree crowns was the highest when CHM_ALS model was applied. The mean percentage error (defined by the number of trees, based on the detection of single pine crowns), calculated based on 248 ground truth areas was 0.89%, which shows a great potential of digital photogrammetry (IPC) and GEOBIA. In case of almost full nationwide cover in Poland of airborne digital images (present IPC models) and ALS point clouds (DTM and DSM), at almost 71% forest stands in the Polish State Forests National Forest Holding (PGL LP), one can assume wide application of geodata (available free of charge) in precise modelling of selected tree stand parameters all over Poland.
W ostatnich latach coraz częściej w odniesieniu do nowoczesnej i zrównoważonej gospodarki leśnej używa się terminu "precyzyjne leśnictwo". Funkcjonowanie takiego modelu zarządzania zasobami biomasy drzewnej opiera się m.in. na dokładnie określonych i monitorowanych cyklicznie wybranych parametrach taksacyjnych drzewostanów i pojedynczych drzew w oparciu o nowoczesne technologie geoinformacyjne, w tym lotnicze skanowanie laserowe (ang. ALS) oraz fotogrametrię cyfrową. Celem pracy była analiza przydatności Modelu Koron Drzew (ang. CHM) generowanego z chmur punktów pochodzących z automatycznego dopasowania cyfrowych zdjęć lotniczych (ang. Image-Based Point Cloud) lub z technologii ALS w celu określania liczby drzew metodą segmentacji pojedynczych koron sosen. Badania realizowano w drzewostanach sosnowych (Pinus sylvestis L.) na obszarze Parku Narodowego "Bory Tucholskie". Drzewostany te poprzez celowe zaniechanie w ostatnich dekadach pewnych zabiegów hodowlanych charakteryzowały się stosunkowo dużym zagęszczeniem drzew w porównaniu do drzewostanów gospodarczych. Model Koron Drzew wygenerowano w jednym wariancie ze zdjęć lotniczych CIR (GSD 0.15 m) a w drugim z chmur punktów ALS (4 pkt/m2 ; CODGiK ISOK). Do generowania chmur punktów ze zdjęć lotniczych metodą dopasowania zastosowano oprogramowanie Photoscan Professional (Agisoft). Modele Koron Drzew pochodzące z dopasowania zdjęć lotniczych (CHM_IPC; GSD: 0.30 m) oraz z danych ALS (CHM_ALS; GSD: 0.75 m) zostały wygenerowane w oprogramowania FUSION (USDA Forest Service). Segmentację koron prowadzono w oprogramowaniu eCognition Developer. Oprócz modeli wysokościowych wykorzystano także informację spektralną (tzw. prawdziwe ortofotomapy CIR; GSD: 0.3 i 0.75 m). Do oceny dokładności otrzymanych wyników wykorzystano dane pochodzące z 248 powierzchni referencyjnych. Przeprowadzona analiza wykazała, że w drzewostanach młodszych klas wieku (< 120 lat), lepsze wyniki można osiągnąć stosując metody dopasowania zdjęć (CHM_IPC) natomiast w drzewostanach starszych (> 120 lat) dokładność wykrywania koron drzew jest najwyższa przy stosowaniu wariantu CHM_ALS. Średni błąd procentowy określania liczby drzew w oparciu o detekcję pojedynczych koron sosen obliczony na podstawie 248 powierzchni referencyjnych wyniósł 0.89% co świadczy o ogromnym potencjale fotogrametrii cyfrowej (metod dopasowania zdjęć) oraz analizy obrazu (OBIA; Object-Based Image Analysis). W aspekcie niemal całkowitego pokrycia kraju danymi ALS oraz blisko 70% udziału drzewostanów sosnowych w Lasach Państwowych można założyć szerokie wykorzystanie tych nieodpłatnie dostępnych geodanych w celu zbudowania modelu precyzyjnego leśnictwa dla obszaru całego kraju.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2016, 28; 137-156
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies