Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Chen, H. Y." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Neural network based identification of hysteresis in human meridian systems
Autorzy:
Tan, Y.
Dong, R.
Chen, H.
He, H.
Powiązania:
https://bibliotekanauki.pl/articles/330958.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
punkt akupunktury
histereza
sieć neuronowa
tradycyjna medycyna chińska
acupuncture point
hysteresis
identification
neural network
human meridian
traditional Chinese medicine
Opis:
Developing a model based digital human meridian system is one of the interesting ways of understanding and improving acupuncture treatment, safety analysis for acupuncture operation, doctor training, or treatment scheme evaluation. In accomplishing this task, how to construct a proper model to describe the behavior of human meridian systems is one of the very important issues. From experiments, it has been found that the hysteresis phenomenon occurs in the relations between stimulation input and the corresponding response of meridian systems. Therefore, the modeling of hysteresis in a human meridian system is an unavoidable task for the construction of model based digital human meridian systems. As hysteresis is a nonsmooth, nonlinear and dynamic system with a multi-valued mapping, the conventional identification method is difficult to be employed to model its behavior directly. In this paper, a neural network based identification method of hysteresis occurring in human meridian systems is presented. In this modeling scheme, an expanded input space is constructed to transform the multi-valued mapping of hysteresis into a one-to-one mapping. For this purpose, a modified hysteretic operator is proposed to handle the extremum-missing problem. Then, based on the constructed expanded input space with the modified hysteretic operator, the so-called Extreme Learning Machine (ELM) neural network is utilized to model hysteresis inherent in human meridian systems. As hysteresis in meridian system is a dynamic system, a dynamic ELM neural network is developed. In the proposed dynamic ELMneural network, the output state of each hidden neuron is fed back to its own input to describe the dynamic behavior of hysteresis. The training of the recurrent ELM neural network is based on the least-squares algorithm with QR decomposition.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 3; 685-694
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Phase features of several typical blood cells and their identification without unwrapping
Autorzy:
Wang, Y.
Chen, Y
Lü, C.
Shang, X.
Xu, Y.
Wu, H.
Zhu, X.
Jin, W.
Powiązania:
https://bibliotekanauki.pl/articles/173588.pdf
Data publikacji:
2013
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
digital holographic phase
nucleated cell
phase model
wrapped phase features
identification
Opis:
The digital holographic phase microscopy (DHPM) technique which has been proposed for cellular morphology and dynamic analysis yielded highly desirable results. However, for nucleated cells (especially white blood cells (WBCs)), their submicroscopic structure has not yet been deconstructed through a phase unwrapping method due to the heterogeneity of an internal phase. By analyzing the phase heterogeneity of subclasses of WBCs, the typical phase models of them are built first in this paper; using the simulation method, the wrapped phase distributions of these models are obtained. However, by optimizing the wrapped phase maps and analyzing the relationships between them and typical blood cells, their features are selected and extracted. Then the models built are sorted out from each other successfully without unwrapping via analyzing these extracted features, which provides a valuable approach and technological base for the classification and identification of blood cells.
Źródło:
Optica Applicata; 2013, 43, 3; 505-514
0078-5466
1899-7015
Pojawia się w:
Optica Applicata
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies