Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Hydrodynamic Forces" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Adhesion influence on the oil velocity and friction forces in hyperbolic microbearing gap
Autorzy:
Wierzcholski, K.
Miszczak, A.
Powiązania:
https://bibliotekanauki.pl/articles/247611.pdf
Data publikacji:
2010
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
adhesion forces
hyperbolic micro-bearing
oil velocity
hydrodynamic pressure
Opis:
In this paper are presented the influences of the adhesion forces occurring in hyperbolic micro contact on the oil velocity and friction forces in hyperbolic micro bearing gap. Here are elaborated the dependences between adhesive forces and oil dynamic viscosity in super thin boundary layer and influences of adhesive forces on the oil velocities and friction forces in micro- and nano-scale arising between two cooperating hyperbolic surfaces in micro-bearings. Oil dynamic viscosity is a sum of classical viscosity and viscosity caused by adhesion and cohesion forces. In hyperbolic micro-bearing the influence of adhesive forces on friction forces is visible not only in friction forces caused by the hydrodynamic pressure but also in friction forces caused by the oil flow velocity. The pressure distributions and capacity values in machine hyperbolic slide micro-bearings are determined in the lubrication region which is defined on the micro-bearing surfaces. Numerical calculations are performed in Mathcad 14 Professional Program implemented by virtue of difference method. In this paper are derived the formulas for velocity components, pressure distributions, friction forces and friction coefficients in hyperbolic coordinates and at the same time the adhesion forces are considered. Up to now the influence of adhesion forces on oil velocity and friction force changes in hyperbolic micro-bearing gap were not considered in analytical way. Present paper elaborat es the preliminary assumptions of hydrodynamic theory of lubrication for hyperbolic micro-bearing in the case if during the lubrication the adhesion forces are taken into account.
Źródło:
Journal of KONES; 2010, 17, 3; 483-489
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Viscoelastic unsteady lubrication of radial slide journal bearing at impulsive motion
Autorzy:
Miszczak, A.
Powiązania:
https://bibliotekanauki.pl/articles/259407.pdf
Data publikacji:
2004
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
viscoelastic unsteady lubrication
analytical and numerical calculation
capacity forces
hydrodynamic pressure
Opis:
This paper presents an analytical solution of velocity components of unsymmetrical oil flow and pressure distribution in radial journal bearing gap for hydrodynamic unsteady lubrication with viscoelastic oil. Numerical calculations are performed in Mathcad 11 Professional Program, with taking into account the method of finite differences. This meŹthod satisfies stability conditions of numerical solutions of partial differential equations and values of capacity forces occurring in cylindrical bearings. Exact calculations of presŹsure in journal bearing and its load capacity may be useful to prevent from premature wear tribological units of self ignition engines, especially those applied in ships.
Źródło:
Polish Maritime Research; 2004, 2; 9-21
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Operating parameters of slide micro – bearings with consideration of oil temperature changes and micro - grooves on sleeve surface
Autorzy:
Miszczak, A.
Powiązania:
https://bibliotekanauki.pl/articles/247490.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
HDD micro-bearings
micro-grooved surfaces
oil viscosity changes in gap height
hydrodynamic pressure
friction forces
load carrying capacity
Opis:
In this paper author presents results of numerical calculations of hydrodynamic pressure distribution in bearing gap, load-carrying capacity, friction force and friction coefficient of slide micro-bearing considering the influence of lubricating oil temperature changes and also taking into account the influence of micro-grooves, which occur on sleeve internal surface. The micro-grooves on that surface are in longitudinal direction. The equation, which describes a bearing gap with micro-grooves on sleeve surface, was adopted from prof. K Wierzcholski's investigations. In very thin gap height of cylindrical micro-bearings, large gradients of temperature can be observed. This causes significant changes of oil dynamic viscosity in the gap height direction. According to this, oil flow velocity, friction forces, and a hydrodynamic pressure during the micro-bearing operation are changing. Up to now the influence of temperature on oil viscosity changes and due to this, on hydrodynamic pressure and on load carrying capacity in cylindrical micro-bearing gap in numerical way were not considered yet. The numerical calculations were performed with the use of Mathcad 14. The finite differences method and own computational procedures were implemented. The calculations were begun by solving the Reynolds' equation, assuming, that the dynamic viscosity is constant. After calculating the hydrodynamic pressure distribution, the temperature distribution in lubricating oil was determined. The obtained function of temperature was used to describe the viscosity changes with temperature. Next step involved determining the hydrodynamic pressure distribution taking into account the viscosity dependence on temperature, and then new distribution of temperature and again new values of viscosity were calculated. Calculations were repeated until assumed convergence and accuracy were reached. The friction force depends on pressure gradient and rotational motion of bearing journal. Part of friction force, which resulting from the pressure gradient, is determined for the area, where the oil film occurs, i.e. from omega p to omega k. Part of friction force, which is related to journal motion, is determined for full wrap angle, i.e. from 0 to 2 pi. The results were presented in the form of graphs, for eccentricity ratio gamma from 0.1 to 0.9, for dimensionless length of the bearing L1=1/4. In numerical calculations were used the theoretical considerations and solutions presented in papers of K. Wierzcholski and A. Miszczak.
Źródło:
Journal of KONES; 2012, 19, 2; 329-336
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies