Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "robot joint" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
The robot joint lubrication with ultra-thin hyperelastic superficial layers
Autorzy:
Wierzcholski, K.
Miszczak, A.
Powiązania:
https://bibliotekanauki.pl/articles/243815.pdf
Data publikacji:
2016
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
robot joint lubrication
various curvilinear hyperactive thin
soft layer shapes
basic hydrodynamic equations
physical models
humanoid robot
Opis:
The surface of humanoid robots is more or less deformable metal and plastic replica of human body. An advanced humanoid robot has human like behaviour – it can talk, run, jump or climb stairs in a very similar way a human does. Hence follows that operation of construction of the robots artificial joints to be similar for biological joints activities. This fact requires applying proper as well corresponding soft solid materials, and specific lubricants. To the interesting phenomena belong the fact, that as well the surfaces of an articular cartilage human joint as the soft surfaces of the robot joints, coated with ultra-thin hyperelastic multi-layers, plays an important role in the surface active lubrication, relative small friction forces and wear during the human limb or robot body activities in the movement. The presence of the ultra-thin hyperelastic layers consisting the soft bearing materials including hyperelastic nano-particles during the robot bearing lubrication enables to indicate numerous positive effects among other the decreases the friction coefficient values. Therefore, the results obtained in this paper may be applicable during the joint-endo-prosthesis or artificial joint design in new humanoid robots, where instead cartilage and synovial fluid are applied new soft materials with active hyperelastic micro- and nano- particles. In this paper is shortly presented the mathematical model of hydrodynamic lubrication of thin boundary layer describing the robot joint. Mathematical model in 3D for lubricant consists of three equations of motion, continuity equation, conservation of energy equation and Young-Kelvin-Laplace equation describing the thin layer interfacial energy.
Źródło:
Journal of KONES; 2016, 23, 3; 555-562
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Inverse kinematics solution for humanoid robot minimizing gravity-related joint torques
Autorzy:
Mikołajczyk, Kacper
Szumowski, Maksymilian
Woliński, Łukasz
Powiązania:
https://bibliotekanauki.pl/articles/27309838.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
humanoid robot
redundant kinematics
joint torque minimization
humanoidalnego robot humanoidalny
minimalizacja momentu obrotowego
Opis:
A method of solving the inverse kinematics problem for a humanoid robot modeled as a tree-shaped manipulator is presented. Robot trajectory consists of a set of trajectories of the characteristic points (the robot’s center of mass, origins of feet and hands frames) in the discrete time domain. The description of motion in the frame associated with the supporting foot allows one to represent the robot as a composite of several serial open-loop redundant manipulators. Stability during the motion is provided by the trajectory of the robot’s center of mass which ensures that the zero moment point criterion is fulfilled. Inverse kinematics solution is performed offline using the redundancy resolution at the velocity level. The proposed method utilizes robot’s redundancy to fulfill joint position limits and to reduce gravity-related joint torques. The method have been tested in simulations and experiments on a humanoid robot Melson, and results are presented.
Źródło:
Archive of Mechanical Engineering; 2022, LXIX, 3; 393--409
0004-0738
Pojawia się w:
Archive of Mechanical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies