Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "heat transfer conditions" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Influence of heat transfer boundary conditions on the temperature field of the continuous casting ingot
Analiza wpływu warunków brzegowych na pole temperatury wlewka ciągłego
Autorzy:
Malinowski, Z.
Telejko, M.
Hadała, B.
Powiązania:
https://bibliotekanauki.pl/articles/354594.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
wymiana ciepła
warunki brzegowe
odlewanie ciągłe
heat transfer
boundary conditions
continuous casting
Opis:
Steel solidification in the continuous casting process starts in the mould, follows in the secondary cooling zones and finishes under air cooling conditions. Casting technology requires very effective heat transfer from the strand surface to the water cooling system. Design and control of the casting process is possible if the ingot temperature is known with a suitable accuracy. Measurements of the ingot temperature are complicated and expensive and due to these reasons are not common in practice. Numerical simulation have to be used to provide data which can be used to design and control of the ingot solidification. In the case of the temperature field modeling heat transfer boundary conditions have to be specified. In the literature wide range of formulas can be found and this may lead to essential errors in the heat transfer coefficient determination. In the paper the selected formulas have been employed in the finite element model to compute the ingot temperature field in the mould and secondary cooling zones. It has been shown that inaccurate determination of the heat flux transferred from the ingot surface to the mould leads to essential errors in the determination of the ingot temperature and solidification. Therefore empirical formulas or complex heat transfer models at ingot - mould interface ought to be employed in finite element models.
Krzepnięcie stali w procesie ciągłego odlewania zachodzi w krystalizatorze i strefie chłodzenia wtónego. Technologia narzuca konieczność bardzo intensywnego odprowadzania ciepła od ciekłej stali, warstwy krzepnącej i zakrzepłej stali. Do prawidłowego prowadzenia odlewania konieczna jest znajomość wielu parametrów technologicznych, z których jednym z najważniejszych jest temperatura wlewka ciągłego. Bezpośrednie pomiary charakterystycznych dla COS wielkości w czasie krzepnięcia i stygnięcia wlewka są bardzo kosztowne oraz czasochłonne i z tych powodów nie znajdują szerszego zastosowania praktycznego. Najczęściej dane do analizy wpływu różnych parametrów wejściowych na proces krzepnięcia dostarczają symulacje numeryczne. Do prawidłowego ich wykonania potrzebne jest jednak określenie parametrów procesu. W przypadku temperatury bardzo ważną rolę odgrywają warunki brzegowe opisujące wymianę ciepła między powierzchnią wlewka ciągłego i otoczeniem. Ich niepoprawne przyjęcie może skutkować niedokładnym wyznaczeniem pola temperatury, a w konsekwencji błędami obliczeń pozostałych parametrów procesu. W literaturze często spotykane są różne formuły pozwalające na wyliczenie współczynnika przejmowania ciepła lub gęstości strumienia ciepła na powierzchni wlewka ciągłego. W pracy przedstawiono przykłady obliczeń pola temperatury dla wybranych zależności opisujących wymianę ciepła wlewka z otoczeniem w strefie krystalizatora i chłodzenia wtórnego. Przedstawiono wyniki symulacji oraz ich analizę. Obliczenia wykonano z zastosowaniem autorskiego modelu matematycznego i numerycznego wymiany ciepła oraz oprogramowania wykorzystującego metodę elementów skończonych.
Źródło:
Archives of Metallurgy and Materials; 2012, 57, 1; 325-331
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An overview of heat transfer enhancement based upon nanoparticles influenced by induced magnetic field with slip condition via finite element strategy
Autorzy:
Hafeez, Muhammad B.
Krawczuk, Marek
Shahzad, Hasan
Powiązania:
https://bibliotekanauki.pl/articles/2105987.pdf
Data publikacji:
2022
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
magnetohydrodynamic flow
porous medium
nanofluids
heat transfer
thermal performance
convective boundary conditions
FEM
Opis:
The mathematical model of heat generation and dissipation during thermal energy transmission employing nanoparticles in a Newtonian medium is investigated. Dimensionless boundary layer equations with correlations for titanium dioxide, copper oxide, and aluminium oxide are solved by the finite element method. Parameters are varied to analyze their impact on the flow fields. Various numerical experiments are performed consecutively to explore the phenomenon of thermal performance of the combination fluid. A remarkable enhancement in thermal performance is noticed when solid structures are dispersed in the working fluid. The Biot number determines the convective nature of the boundary. When the Biot number is increased, the fluid temperature decreases significantly. Among copper oxide, aluminium oxide, and titanium oxide nanoparticles, copper oxide nanoparticles are found to be the most effective thermal enhancers.
Źródło:
Acta Mechanica et Automatica; 2022, 16, 3; 200--206
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies