Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "harmonic series" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
On In-Network and Other Types of Amplifier Descriptions for Nonlinear Distortion Analysis
Autorzy:
Borys, A.
Powiązania:
https://bibliotekanauki.pl/articles/226946.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
weakly nonlinear amplifiers
nonlinear distortion analysis
harmonic distortion
constitutive relations
Volterra series
Opis:
Basics of modelling analog weakly nonlinear amplifiers at higher frequencies for the purpose of nonlinear distortion analysis are addressed in this paper. First, the constitutive relation for this class of amplifiers, with the use of a Volterra series, is formulated. It is the basis for formulation and derivation of the so-called in-network and input-output type descriptions of an amplifier in the time domain, which are then transferred into the multi-frequency domains. Usefulness of the general models achieved, which were not published up to now in the literature, lies in the fact that they can be used for any topology in which the amplifier is incorporated and for any nonlinear distortion measure assumed. Some examples of calculations are given at the end of the paper for cascade and feedback topologies, and for harmonic distortion measure.
Źródło:
International Journal of Electronics and Telecommunications; 2010, 56, 2; 177-184
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalization of Linear Rosenstark Method of Feedback Amplifier Analysis to Nonlinear One
Autorzy:
Borys, A.
Zakrzewski, Z.
Powiązania:
https://bibliotekanauki.pl/articles/226780.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
weakly nonlinear amplifiers
nonlinear Rosenstark model
nonlinear distortion analysis
harmonic distortion
constitutive equations
Volterra series
Opis:
Generalization of Linear Rosenstark Method of Feedback Amplifier Analysis to Nonlinear One This paper deals with an extension of the Rosenstark’s linear model of an amplifier to a nonlinear one for the purpose of performing nonlinear distortion analysis. Contrary to an approach using phasors, our method uses the Volterra series. Relying upon the linear model mentioned above, we define first a set of the so-called amplifier’s constitutive equations in an operator form. Then, we expand operators using the Volterra series truncated to the first three components. This leads to getting two representations in the time domain, called in-network and input-output type descriptions of an amplifier. Afterwards, both of these representations are transferred into the multi-frequency domains. Their usefulness in calculations of any nonlinear distortion measure as, for example, harmonic, intermodulation, and/or cross-modulation distortion is demonstrated. Moreover, we show that they allow a simple calculation of the so-called nonlinear transfer functions in any topology as, for example, of cascade and feedback structures and their combinations occurring in single-, two-, nd three-stage amplifiers. Examples of such calculations are given. Finally in this paper, we comment on usage of such notions as nonlinear signals, intermodulation nonlinearity, and on identification of transfer function poles and zeros lying on the frequency axis with related real-valued frequencies.
Źródło:
International Journal of Electronics and Telecommunications; 2014, 60, 1; 48-60
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies