- Tytuł:
- Fractional global domination in graphs
- Autorzy:
-
Arumugam, Subramanian
Karuppasamy, Kalimuthu
Hamid, Ismail - Powiązania:
- https://bibliotekanauki.pl/articles/744509.pdf
- Data publikacji:
- 2010
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
domination
global domination
dominating function
global dominating function
fractional global domination number - Opis:
- Let G = (V,E) be a graph. A function g:V → [0,1] is called a global dominating function (GDF) of G, if for every v ∈ V, $g(N[v]) = ∑_{u ∈ N[v]}g(u) ≥ 1$ and $g(\overline{N(v)}) = ∑_{u ∉ N(v)}g(u) ≥ 1$. A GDF g of a graph G is called minimal (MGDF) if for all functions f:V → [0,1] such that f ≤ g and f(v) ≠ g(v) for at least one v ∈ V, f is not a GDF. The fractional global domination number $γ_{fg}(G)$ is defined as follows: $γ_{fg}(G)$ = min{|g|:g is an MGDF of G } where $|g| = ∑_{v ∈ V} g(v)$. In this paper we initiate a study of this parameter.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2010, 30, 1; 33-44
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki