Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "zawartosc chromu" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Chrom, nikiel i ołów w wierzchniej warstwie gleb aglomeracji warszawskiej
Chromium, nickel and lead content in upper layer of soils of Warsaw agglomeration
Autorzy:
Biernacka, E.
Borowski, J.
Maluszynska, I.
Maluszynski, M.J.
Powiązania:
https://bibliotekanauki.pl/articles/887046.pdf
Data publikacji:
2006
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
miasta
Warszawa
aglomeracja warszawska
gleby
warstwa wierzchnia
zanieczyszczenia gleb
chrom
nikiel
olow
zawartosc pierwiastkow
zawartosc chromu
zawartosc niklu
zawartosc olowiu
Źródło:
Scientific Review Engineering and Environmental Sciences; 2006, 15, 2[34]
1732-9353
Pojawia się w:
Scientific Review Engineering and Environmental Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie algorytmów interpolacji i sztucznych sieci neuronowych do wyznaczania charakterystyki zawartości chromu w glebach
Application of interpolation algorithms and artificial neural networks for chromium contents in soils characterization
Autorzy:
Gruszczyński, S.
Urbański, K.
Powiązania:
https://bibliotekanauki.pl/articles/269225.pdf
Data publikacji:
2005
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
algorytmy interpolacji
sieci neuronowe
sztuczne sieci neuronowe
gleby
zanieczyszczenie gleb
chrom
zawartość chromu w glebach
Opis:
Przeanalizowano różne podejścia do ustalania trendu rozkładu poziomego chromu (Cr) w glebie w warunkach silnego zanieczyszczenia tym pierwiastkiem. Zastosowano algorytmy regresji wielomianowej (wielomiany I, II i III stopnia), algorytmy interpolacji (TIN, Kriging, RST) oraz sztuczne sieci neuronowe (MLP, CANFIS, RBF, GRNN, PNN, MDN). Wykorzystano dane pochodzące z badań terenowych przeprowadzonych w otoczeniu Zakładów Chemicznych "Alwernia". Różnice między poszczególnymi podejściami zaprezentowano w formie graficznej oraz niektórych statystyk rozkładu reszt. Badania rozkładu przestrzennego zanieczyszczenia gleb nasunęły wniosek, iż ważnym elementem staje się określenie precyzji informacji oraz granic błędu przez akceptację jakiegoś oszacowania zanieczyszczenia, natomiast na dalszy plan schodzi wykrycie lub uwypuklenie regularności związanej z mechanizmem zjawiska imisji. Wydaje się, że zmienność zawartości chromu w glebach, zauważalna nawet na bliskich dystansach, utrudnia akceptację metod interpolacji jako sposobu oceny rozkładu zanieczyszczeń. Z drugiej strony znaczące nieliniowości utrudniają akceptację modeli regresji. W tych warunkach możliwością wartą rozważenia jest modelowanie z użyciem sieci neuronowych, w tym także wykorzystanie rozwiązań hybrydowych (np. MDN), pozwalających na pogłębioną analizę zmienności koncentracji Cr w glebach.
Various ways of approach, to determine the horizontal distribution trend (tendency) of Chromium (Cr) in soil, where is high pollution by this element are analysed. Polynominal regression algorithms (I, II, III degree polynominals), interpolation algorithms (TIN, Kriging, RST), and also artificial neural networks (MLP, CANFIS, RBF, GRNN, PNN, MDN) are applied. Data from field experiments, carried out in the area of Chemical Plant in Alwernia were used. The differences between several ways of approach are presented in a graphical form, and also in some remainders distribution statistics. The soil pollution spatial distribution examinations lead to following conclusion, that in the first place is the information precision determination, and also the limit of error, through the pollution evaluation acceptance, whereas in the second place is the indication or standing out the regularity connected with the imission effect mechanism. It seems that the chromium concentration in soils variation, noticed even on short distances, makes it difficult the acceptance of interpolation method, as a method of contamination distribution evaluation. On the other hand the considerable nonlinearity makes difficult the acceptance of regression model. In these circumstances, the possibility which is worth consideration, is the modelling with the application of neuron networks, that is also hybrid solution application (for instance MDN), which gives the possibility of Cr concentration in soils variation deeper analysis.
Źródło:
Inżynieria Środowiska / Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie; 2005, 10, 1; 15-44
1426-2908
Pojawia się w:
Inżynieria Środowiska / Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies