Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "gearbox fault" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Gear fault detection using vibration analysis
Wykrywanie uszkodzeń przekładni na podstawie analizy drgań
Autorzy:
Wilk, A.
Łazarz, B.
Madej, H.
Powiązania:
https://bibliotekanauki.pl/articles/329664.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
przekładnia zębata
drgania
uszkodzenie kół
diagnostyka
gearbox
vibration
gear fault
diagnostics
Opis:
The article includes results of the team's research work on vibroacoustic diagnostic of gearbox components' faults. A review of simulation and experimental researches that aimed at elaboration of methods which would enable early identification of teeth faults in the form of working surface pitting, spalling of tooth crest, crack at the tooth bottom as well as partial breaking of a tooth, is presented. Assessment of selected methods of processing the vibroacoustic signals during the detection of gear faults has been carried out while faults occur in gear bearings working under various conditions. The initially processed vibration signals analyzed within time and frequency domains constituted a basis for preparation of detection measures that were sensitive to early stages of damage. The measures obtained as a result of simulation and experimental tests were used to construct a set of neuron classifier models to diagnose the type and degree of toothed wheels faults with a validation error below 5%. The achieved qualitative and quantitative conformity of simulation and experimental research results has shown that application of an expanded and identified dynamic model of the gear in a power transmission system enables the acquisition of reliable diagnostic relations.
W artykule zawarto wyniki prac zespołu w zakresie diagnostyki wibroakustycznej uszkodzeń elementów przekładni zębatych. Przedstawiono przegląd badań symulacyjnych i doświadczalnych, których celem było opracowanie metod pozwalających na wczesną identyfikację uszkodzeń zębów w postaci pittingu powierzchni roboczych, wykruszenia wierzchołka, pęknięcia u podstawy zęba oraz częściowego wyłamania zęba. Dokonano oceny efektywności wybranych metod przetwarzania sygnałów wibroakustycznych w procesie wykrywania uszkodzeń kół zębatych przy jednoczesnym występowaniu uszkodzeń łożyskowania przekładni pracujących w różnych warunkach. Wstępnie przetworzone sygnały drganiowe analizowane w dziedzinie czasu i częstotliwości stanowiły podstawę do opracowania miar diagnostycznych wrażliwych na wczesne stadia uszkodzeń. Miary otrzymane w wyniku symulacji oraz badan doświadczalnych wykorzystano do budowy zestawu wzorców klasyfikatora neuronowego diagnozującego rodzaj i stopień uszkodzenia kół przekładni z błędem walidacji poniżej 5%. Uzyskana zgodność jakościowa i ilościowa wyników badań symulacyjnych i doświadczalnych wykazała, że wykorzystanie rozbudowanego i zidentyfikowanego modelu dynamicznego przekładni w układzie napędowym umożliwia pozyskanie wiarygodnych relacji diagnostycznych.
Źródło:
Diagnostyka; 2008, 3(47); 111-116
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykrywanie wczesnych faz uszkodzeń kół zębatych w warunkach eksploatacyjnych
Early fault detection of toothed gear in exploitation conditions
Autorzy:
Łazarz, B.
Wojnar, G.
Czech, P.
Powiązania:
https://bibliotekanauki.pl/articles/301057.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
przekładnie zębate
drgania
uszkodzenia kół
diagnostyka
gearbox
vibration
gear fault
diagnostics
Opis:
Przekładnie zębate są powszechnie wykorzystywane w układach napędowych maszyn i urządzeń. W trakcie ich eksploatacji bardzo istotne jest odpowiednio wczesne pozyskanie informacji o postępujących procesach degradacyjnych. Pozwala to na zaplanowanie we właściwym czasie niezbędnych przeglądów oraz napraw, zwiększając w ten sposób niezawodność wszystkich elementów łańcucha kinematycznego. Z tego powodu w artykule zawarto wyniki prac zespołu w zakresie diagnostyki wibroakustycznej uszkodzeń elementów przekładni zębatych. Przedstawiono przegląd badań symulacyjnych i doświadczalnych, których celem było opracowanie metod pozwalających na wczesną identyfikację uszkodzeń zębów w postaci pittingu powierzchni roboczych, wykruszenia wierzchołka, pęknięcia u podstawy zęba oraz częściowego wyłamania zęba. Dokonano oceny efektywności wybranych metod przetwarzania sygnałów wibroakustycznych w procesie wykrywania uszkodzeń kół zębatych przy jednoczesnym występowaniu uszkodzeń łożyskowania przekładni pracujących w różnych warunkach. Wstępnie przetworzone sygnały drganiowe analizowane w dziedzinie czasu i częstotliwości stanowiły podstawę do opracowania miar diagnostycznych wrażliwych na wczesne stadia uszkodzeń. Miary otrzymane w wyniku symulacji oraz badań doświadczalnych wykorzystano do budowy zestawu wzorców klasyfikatora neuronowego diagnozującego rodzaj i stopień uszkodzenia kół przekładni z błędem walidacji poniżej 5%. Uzyskana zgodność jakościowa i ilościowa wyników badań symulacyjnych i doświadczalnych wykazała, że wykorzystanie rozbudowanego i zidentyfikowanego modelu dynamicznego przekładni w układzie napędowym, umożliwia pozyskanie wiarygodnych relacji diagnostycznych
Toothed gears are commonly used in various power transmission systems. Collecting information about degradation processes early enough is crucial during their exploitation. It enables suitable planning of required inspections and repairs, improving the reliability of all kinetic chain elements. The article includes results of the team’s research work on vibroacoustic diagnostic of gearbox components’ faults. A review of simulation and experimental researches that aimed at elaboration of methods which would enable early identification of teeth faults in the form of working surface pitting, spalling of tooth crest, crack at the tooth bottom as well as partial breaking of a tooth, is presented. Assessment of selected methods of processing the vibroacoustic signals during the detection of gear faults has been carried out while faults occur in gear bearings working under various conditions. The initially processed vibration signals analyzed within time and frequency domains constituted a basis for preparation of detection measures that were sensitive to early stages of damage. The measures obtained as a result of simulation and experimental tests were used to construct a set of neuron classifier models to diagnose the type and degree of toothed wheels faults with a validation error below 5%. The achieved qualitative and quantitative conformity of simulation and experimental research results has shown that application of an expanded and identified dynamic model of the gear in a power transmission system enables the acquisition of reliable diagnostic relations.
Źródło:
Eksploatacja i Niezawodność; 2011, 1; 68-77
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Gearbox faults identification using vibration signal analysis and artificial intelligence methods
Identyfikacja uszkodzeń skrzyni biegów za pomocą analizy sygnału drgań oraz metod sztucznej inteligencji
Autorzy:
Zuber, N.
Bajrić, R.
Šostakov, R.
Powiązania:
https://bibliotekanauki.pl/articles/301941.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
drgania skrzyni biegów
uszkodzenie skrzyni biegów
sztuczna sieć neuronowa
samoorganizująca się mapa cech
gearbox vibration
gear fault
artificial neural network
self-organized feature map
Opis:
Artykuł omawia zastosowanie sztucznych sieci neuronowych opartych na cechach oraz analizy drgań do celów automatycznej identyfikacji uszkodzeń skrzyni biegów. Prace eksperymentalne przeprowadzono na specjalnie zaprojektowanym stanowisku badawczym, a uzyskane wyniki zweryfikowano na przykładzie przekładni przenośnika taśmowego koparki wielonaczyniowej SRs 1300 wykorzystywanej w kopalni odkrywkowej. Cechy drgań w dziedzinie czasu i częstotliwości są wykorzystywane jako wejścia klasyfikatorów uszkodzeń. Kompletny zbiór proponowanych cech drgań wykorzystano jako wejścia samoorganizujących się map cech, a na podstawie wyników opracowano zredukowany zbiór cech drgań, które wykorzystano jako wejścia do nadzorowanych sztucznych sieci neuronowych. Zbadano dwa typowe uszkodzenia przekładni : zużycie przekładni oraz brakujące zęby przekładni. Uzyskane wyniki wskazują, że proponowany zbiór cech drgań umożliwia niezawodną identyfikację rozwijających się uszkodzeń w układach przenoszenia napędu z kołami zębatymi.
The paper addresses the implementation of feature based artificial neural networks and vibration analysis for the purpose of automated gearbox faults identification. Experimental work has been conducted on a specially designed test rig and the obtained results are validated on a belt conveyor gearbox from a mine strip bucket wheel excavator SRs 1300. Frequency and time domain vibration features are used as inputs to fault classifiers. A complete set of proposed vibration features are used as inputs for selforganized feature maps and based on the results a reduced set of vibration features are used as inputs for supervised artificial neural networks. Two typical gear failures were tested: worn gears and missing teeth. The achieved results show that proposed set of vibration features enables reliable identification of developing faults in power transmission systems with toothed gears.
Źródło:
Eksploatacja i Niezawodność; 2014, 16, 1; 61-65
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies