Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Smulko, J." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Method of selecting the LS-SVM algorithm parameters in gas detection process
Sposób doboru parametrów algorytmu LS-SVM w procesie detekcji gazów
Autorzy:
Lentka, Ł.
Smulko, J.
Powiązania:
https://bibliotekanauki.pl/articles/267849.pdf
Data publikacji:
2015
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
gas detection
optimal parameters selection
support vector machine (SVM)
artificial immune system
detekcja gazów
optymalny dobór parametrów
maszyna wektorów nośnych
sztuczny system immunologiczny
Opis:
In this paper we showed the method of resistive gas sensors data processing. The UV irradiation and temperature modulation was applied to improve gas sensors’ selectivity and sensitivity. Noise voltage across the sensor’s terminals (proportional to its resistance fluctuations) was recorded to estimate power spectral density. This function was an input data vector for LS-SVM (least squares – support vector machine) algorithm, which predicted a concentration of gas present in sensor’s ambient atmosphere. The algorithm creates a non-linear regression model at learning stage. This model can be used to predict gas concentration by recording resistance noise only. We have proposed a fast method of selecting LS-SVM parameters to determine high quality model. The method utilizes a behavior of immune system to determine optimal parameters of the LS-SVM algorithm. High accuracy of the applied method was proved for the recorded experimental data.
W artykule pokazano metodę przetwarzania danych z rezystancyjnych czujników gazów, stosowaną do wykrywania gazów. W celu zwiększenia czułości i selektywności czujników zastosowano modulację temperaturową oraz oświetlenie diodą LED UV aby zebrać więcej danych. Szumy napięciowe rejestrowane na zaciskach czujnika (proporcjonalne do fluktuacji jego rezystancji) zostały wykorzystane do wyznaczenia gęstości widmowej mocy. Ta funkcja stanowiła wektor danych wejściowych dla algorytmu maszyny wektorów nośnych według kryterium najmniejszych kwadratów (LS-SVM), umożliwiając określenie stężenia gazu występującego w atmosferze otaczającej czujnik. Nieliniowy charakter algorytmu pozwala na tworzenie w fazie uczenia modelu na podstawie danych uzyskanych z pomiarów za pomocą metody odniesienia. Pokazano szybki sposób doboru optymalnych parametrów algorytmu LS-SVM, gwarantujących skuteczność szacowania stężenia gazu. W badaniach wykorzystano metodę symulującą działanie systemu odpornościowego. Analiza danych eksperymentalnych potwierdziła skuteczność prezentowanej metody.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2015, 46; 69-72
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Portable exhaled breath analyzer employing fluctuation-enhanced gas sensing method in resistive gas sensors
Autorzy:
Kwiatkowski, A.
Chludziński, T.
Smulko, J.
Powiązania:
https://bibliotekanauki.pl/articles/220591.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
resistance gas sensor
fluctuation enhanced sensing
flicker noise
gas detection
breath sample collection
Opis:
This paper presents a portable exhaled breath analyser, developed to detect selected diseases. The set-up employs resistive gas sensors: commercial MEMS sensors and prototype gas sensors made of WO3 gas sensing layers doped with various metal ingredients. The set-up can modulate the gas sensors by applying UV light to induce physical changes of the gas sensing layers. The sensors are placed in a tiny gas chamber of a volume of about 22 ml. Breath samples can be either injected or blown into the gas chamber when an additional pump is used to select the last breath phase. DC resistance and resistance fluctuations of selected sensors using separate channels are recorded by an external data acquisition board. Low-noise amplifiers with a selected gain were used together with a necessary bias circuit. The set-up monitors other atmospheric parameters interacting with the responses of resistive gas sensors (humidity, temperature, atmospheric pressure). The recorded data may be further analysed to determine optimal detection methods.
Źródło:
Metrology and Measurement Systems; 2018, 25, 3; 551-560
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Determination Of Gas Mixture Components Using Fluctuation Enhanced Sensing And The LS-SVM Regression Algorithm
Autorzy:
Lentka, Ł.
Smulko, J. M.
Ionescu, R.
Granqvist, C. G.
Kish, L. B.
Powiązania:
https://bibliotekanauki.pl/articles/221708.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
LS-SVM algorithm
resistance gas sensor
fluctuation enhanced sensing
gas detection
Opis:
This paper analyses the effectiveness of determining gas concentrations by using a prototype WO3 resistive gas sensor together with fluctuation enhanced sensing. We have earlier demonstrated that this method can determine the composition of a gas mixture by using only a single sensor. In the present study, we apply Least-Squares Support-Vector-Machine-based (LS-SVM-based) nonlinear regression to determine the gas concentration of each constituent in a mixture. We confirmed that the accuracy of the estimated gas concentration could be significantly improved by applying temperature change and ultraviolet irradiation of the WO3 layer. Fluctuation-enhanced sensing allowed us to predict the concentration of both component gases.
Źródło:
Metrology and Measurement Systems; 2015, 22, 3; 341-350
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies