Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "separation density" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Radiometryczne metody monitoringu procesu rozdziału produktów w pulsacyjnej osadzarce węgla
Radiometric methods of monitoring of a coal separation process in a pulsating jig
Autorzy:
Cierpisz, S.
Kryca, M.
Sobierajski, W.
Gola, M.
Powiązania:
https://bibliotekanauki.pl/articles/216464.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
wzbogacanie węgla
odbiór produktu w osadzarce
gęstościomierz radiometryczny
miernik promieniowania naturalnego
coal preparation
discharge control
pulsating jig
radiometric density meter
natural radiation from coal
Opis:
Przedstawiono zastosowanie dwóch radiometrycznych metod monitoringu procesu rozdziału produktów w osadzarce: metody absorpcji promieniowania gamma oraz metody pomiaru promieniowania naturalnego łoża osadzarki. Zastosowanie tych metod pomiarowych umożliwia uzyskanie informacji o efektywności procesu niedostępnych za pomocą innych stosowanych metod. Prowadzone są badania nad usprawnieniem działania pływakowego układu sterowania osadzarki z zastosowaniem powyższych metod.
A new monitoring system based on the monitoring of natural radiation emitted by the material in the separation zone of a jig compartment has been developed and tested in parallel with a radiometric density meter and a conventional float. The authors investigated the correlation between the separation density monitored by the meter and the intensity of the natural radiation. The measuring head of the radiometric density meter consists of a 137Cs radiation source and a detector in the form of a scintillation counter. The signal from the detector is measured over a period of 0.15 s at the end of each cycle of pulsations (1.2 s) when the material is compressed. The control systems were installed in the second compartment of the O M20-type jig. The aim of control was to stabilise the separation density at desired values. The separation process was monitored by a radiometric density meter (RDM) to indicate changes in the separation density over a given period of time. The RDM was installed close to the upper edge of the product overflow wall to measure the density of the material separation layer reporting in half to the product and in half to the refuse. A conventional float, indicating the position of the heavy fraction in the bed, was used as a basic sensor in the control system. After first experiments the RDM replaced the float as a main sensor in the closed loop control. In the third experiment a new monitor, based on the measurement of the natural radiation emitted by the material (NRM) accumulating below the product overflow wall was used. A good correlation between the NRM indications and the RDM measurements indicates that the radiometric density meter RDM can be replaced effectively by the NRM, especially in control systems where separation density is stabilised at desired values.
Źródło:
Gospodarka Surowcami Mineralnymi; 2016, 32, 2; 125-134
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pomiar gęstości ośrodka w osadzarce z użyciem gęstościomierza radiometrycznego z licznikiem impulsów
Measurement of a Media Density in a Jig Using Radiometric Density Meter with a Counter of Pulses
Autorzy:
Cierpisz, S.
Joostberens, J.
Powiązania:
https://bibliotekanauki.pl/articles/318761.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
gęstościomierz radiometryczny
licznik impulsów
cyfrowe przetwarzanie sygnału
wzbogacanie węgla w osadzarce
radiometric density meter
counter of pulses
digital signal processing
coal separation process in a jig
Opis:
Gęstościomierze radiometryczne są stosowane do monitorowania różnych procesów technologicznych. Większość z nich wykorzystuje absorpcję promieniowania gamma. Podstawowym elementem gęstościomierza jest głowica pomiarowa, która składa się ze źródła promieniowania gamma (137Cs) oraz detektora, zwykle w postaci licznika scyntylacyjnego. Sygnał z detektora jest ciągiem impulsów, który zawsze jest sygnałem stochastycznym o rozkładzie Poissona, niezależnie od charakteru sygnału wejściowego. Serie impulsów z detektora są często zliczane w czasie ts za pomocą licznika. W takiej sytuacji licznik powinien być traktowany jako rodzaj cyfrowego filtru dolnoprzepustowego, którego parametrem jest czas pomiaru ts. W czasie ustalonym (w przybliżeniu stała wartość gęstości w czasie) dłuższy czas ts zwiększa dokładność pomiaru. Natomiast, kiedy gęstość istotnie zmienia się w czasie błąd dynamiczny rośnie z nadmiernym wydłużaniem czasu pomiaru. Głównym problemem filtracji jest więc dobór wartości czasu pomiaru ts, minimalizującego dynamiczny błąd pomiaru zgodnie z przyjętym kryterium. W przypadku znajomości przebiegu zmian gęstości w czasie można eksperymentalnie dobrać czas pomiaru, wykorzystując narzędzia do badań symulacyjnych. W takiej sytuacji znany przebieg gęstości należy traktować jako sygnał odniesienia. W przypadku wzbogacania węgla w osadzarce, gęstościomierz radiometryczny może być zastosowany do stabilizacji gęstości rozdziału i kształtu przebiegu gęstości ośrodka. W artykule przedstawiono metodę doboru czasu pomiaru ts z wykorzystaniem wyznaczonych zmian gęstości ośrodka w czasie trzech kolejnych cykli pulsacji w osadzarce. Omówiono problemy oraz wady i zalety związane z cyfrowym przetwarzaniem sygnału z detektora, realizowanym wyłącznie za pomocą licznika impulsów. Model zmian gęstości ośrodka w czasie trzech cykli pulsacji został zidentyfikowany na podstawie wyników badań przemysłowych, a jego równanie zostało podane w artykule. Doboru parametru licznika impulsów tj. czasu pomiaru ts, przy minimalizacji przyjętego kryterium, dokonano symulacyjnie. Wyniki badań symulacyjnych stabelaryzowano i przedstawiono w formie graficznej.
Radiometric density meters are used to monitor many different technological processes. Most of them use gamma-ray absorption. Basic element of the meter is a measuring head that consists of a radiation source (137Cs) and a detector usually in the form of a scintillation counter. The output signal from the detector is the sequence of pulses which is always a stochastic signal with Poisson distribution, regardless of the character of the input signal. The series of pulses are often counted during the time ts in a counter. In that situation the counter should be considered as a kind of a low-pass digital filter whose parameter is a time of measurement ts. The longer the time of measurement ts, the higher the accuracy of the monitor in steady state. When density varies, the dynamic error of measurement increases with the excessive lengthen of measurement time ts. The main filtration problem is a selection of value of the measurement time to minimise the dynamic error of measurement according to accepted criterion. The measurement time can be determined experimentally by simulation when the shape of density changes is known. In that situation, the known shape of density should be treated as a reference signal. In case of coal separation process in a jig the radiometric densitometer can be used to stabilize the separation density and the shape of density dynamic changes. The paper presents the method of selection of the measurement time using the computed changes density of three following cycles in the jig. Problems, advantages and disadvantages associated with using only the counter for digital signal processing from the detector of radiometric densitometer are discussed. Model of the density changes, during three cycles of the separation process in a jig, was identified based on results of industrial tests and its equation is given in the paper. Selection of the counter parameter, that is the measurement time, was done by the simulation minimizing the value of accepted criterion. Simulation results were tabulated and presented in the graphic form.
Źródło:
Inżynieria Mineralna; 2017, R. 18, nr 2, 2; 119-126
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies