Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "rozmyta sieć neuronowa" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Simulation and Analysis of Sintering Furnace Temperature Based on Fuzzy Neural Network Control
Autorzy:
Chaoxin, Zou
Rong, Li
Zhiping, Xie
Ming, Su
Jingshi, Zeng
Xu, Ji
Xiaoli, Ye
Ye, Wang
Powiązania:
https://bibliotekanauki.pl/articles/1837849.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fuzzy neural network
furnace
sintering
temperature control
PID
sieć neuronowa rozmyta
piec
spiekanie
kontrola temperatury
Opis:
Aiming at the problems of delay and couple in the sintering temperature control system of lithium batteries, a fuzzy neural network controller that can solve complex nonlinear temperature control is designed in this paper. The influence of heating voltage, air inlet speed and air inlet volume on the control of temperature of lithium battery sintering is analyzed, and a fuzzy control system by using MATLAB toolbox is established. And on this basis, a fuzzy neural network controller is designed, and then a PID control system and a fuzzy neural network control system are established through SIMULINK. The simulation shows that the response time of the fuzzy neural network control system compared with the PID control system is shortened by 24s, the system stability adjustment time is shortened by 160s, and the maximum overshoot is reduced by 6.1%. The research results show that the fuzzy neural network control system can not only realize the adjustment of lithium battery sintering temperature control faster, but also has strong adaptability, fault tolerance and anti-interference ability.
Źródło:
Archives of Foundry Engineering; 2021, 21, 1; 23-30
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simulation and Analysis of Sintering Furnace Temperature Based on Fuzzy Neural Network Control
Autorzy:
Chaoxin, Zou
Rong, Li
Zhiping, Xie
Ming, Su
Jingshi, Zeng
Xu, Ji
Xiaoli, Ye
Ye, Wang
Powiązania:
https://bibliotekanauki.pl/articles/1837792.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fuzzy neural network
furnace
sintering
temperature control
PID
sieć neuronowa rozmyta
piec
spiekanie
kontrola temperatury
Opis:
Aiming at the problems of delay and couple in the sintering temperature control system of lithium batteries, a fuzzy neural network controller that can solve complex nonlinear temperature control is designed in this paper. The influence of heating voltage, air inlet speed and air inlet volume on the control of temperature of lithium battery sintering is analyzed, and a fuzzy control system by using MATLAB toolbox is established. And on this basis, a fuzzy neural network controller is designed, and then a PID control system and a fuzzy neural network control system are established through SIMULINK. The simulation shows that the response time of the fuzzy neural network control system compared with the PID control system is shortened by 24s, the system stability adjustment time is shortened by 160s, and the maximum overshoot is reduced by 6.1%. The research results show that the fuzzy neural network control system can not only realize the adjustment of lithium battery sintering temperature control faster, but also has strong adaptability, fault tolerance and anti-interference ability.
Źródło:
Archives of Foundry Engineering; 2021, 21, 1; 23-30
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A modified particle swarm optimization procedure for triggering fuzzy flip-flop neural networks
Autorzy:
Kowalski, Piotr A.
Słoczyński, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2055168.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fuzzy neural network
fuzzy flip-flop neuron
particle swarm optimization
training procedure
sieć neuronowa rozmyta
optymalizacja rojem cząstek
procedura szkoleniowa
Opis:
The aim of the presented study is to investigate the application of an optimization algorithm based on swarm intelligence to the configuration of a fuzzy flip-flop neural network. Research on solving this problem consists of the following stages. The first one is to analyze the impact of the basic internal parameters of the neural network and the particle swarm optimization (PSO) algorithm. Subsequently, some modifications to the PSO algorithm are investigated. Approximations of trigonometric functions are then adopted as the main task to be performed by the neural network. As a result of the numerical verification of the problem, a set of rules are developed that can be helpful in constructing a fuzzy flip-flop type neural network. The obtained results of the computations significantly simplify the structure of the neural network in relation to similar conditions known from the literature.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 4; 577--586
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting return products in an integrated forward/reverse supply chain utilizing an ANFIS
Autorzy:
Kumar, D. T.
Soleimani, H.
Kannan, G.
Powiązania:
https://bibliotekanauki.pl/articles/329809.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
artificial neural network
adaptive network based fuzzy
inference system
closed loop supply chain
forecasting methods
fuzzy neural network
sztuczna sieć neuronowa
system wnioskowania
metoda prognozowania
sieć neuronowa rozmyta
Opis:
Interests in Closed-Loop Supply Chain (CLSC) issues are growing day by day within the academia, companies, and customers. Many papers discuss profitability or cost reduction impacts of remanufacturing, but a very important point is almost missing. Indeed, there is no guarantee about the amounts of return products even if we know a lot about demands of first products. This uncertainty is due to reasons such as companies’ capabilities in collecting End-of-Life (EOL) products, customers’ interests in returning (and current incentives), and other independent collectors. The aim of this paper is to deal with the important gap of the uncertainties of return products. Therefore, we discuss the forecasting method of return products which have their own open-loop supply chain. We develop an integrated two-phase methodology to cope with the closed-loop supply chain design and planning problem. In the first phase, an Adaptive Network Based Fuzzy Inference System (ANFIS) is presented to handle the uncertainties of the amounts of return product and to determine the forecasted return rates. In the second phase, and based on the results of the first one, the proposed multi-echelon, multi-product, multi-period, closed-loop supply chain network is optimized. The second-phase optimization is undertaken based on using general exact solvers in order to achieve the global optimum. Finally, the performance of the proposed forecasting method is evaluated in 25 periods using a numerical example, which contains a pattern in the returning of products. The results reveal acceptable performance of the proposed two-phase optimization method. Based on them, such forecasting approaches can be applied to real-case CLSC problems in order to achieve more reliable design and planning of the network.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 3; 669-682
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Expert System Coupled With a Hierarchical Structure of Fuzzy Neural Networks for Fault Diagnosis
Autorzy:
Calado, J. M. F.
Costa, I. S.
Powiązania:
https://bibliotekanauki.pl/articles/908283.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
rozpoznanie błędu
wykrywanie błędu
system ekspertowy
sieć neuronowa rozmyta
fault diagnosis
fault detection
fault isolation
shallow knowledge
deep knowledge
expert system
fuzzy neural network
abrupt faults
incipient faults
Opis:
An on-line fault diagnosis system, designed to be robust to the normal transient behaviour of the process, is described. The overall system consists of an expert system cascade with a hierarchical structure of fuzzy neural networks, corresponding to a multi-stage fault detection and isolation system. The fault detection is performed through the expert system by means of fault detection heuristic rules, generated from deep and shallow knowledge of the process under consideration. If a fault is detected, the hierarchical structure of fuzzy neural networks starts and it performs the fault isolation task. The structure of this diagnosis system was designed to allow for the diagnosis of single and multiple simultaneous abrupt and incipient faults from only single abrupt fault symptoms. Also, it combines the advantages of both fuzzy reasoning and neural networks learning capacity. A continuous binary distillation column has been used as a test bed of the current approach. Single, double and triple simultaneous abrupt faults, as well as incipient faults, have been considered. The preliminary results obtained show a good accuracy, even in the case of multiple faults.
Źródło:
International Journal of Applied Mathematics and Computer Science; 1999, 9, 3; 667-687
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies