Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fuzzy rule" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Sprzętowa realizacja procesu dekompozycji lingwistycznej bazy wiedzy systemu wnioskowania przybliżonego
Hardware Implementation of the Knowledge Base Linguistic Decomposition of the Fuzzy Inference System
Autorzy:
Wyrwoł, B.
Powiązania:
https://bibliotekanauki.pl/articles/155723.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
funkcja przynależności
reguła rozmyta
baza wiedzy
wnioskowanie przybliżone
dekompozycja relacyjna
dekompozycja lingwistyczna
układ reprogramowalny FPGA
membership function
fuzzy rule
fuzzy relation
knowledge base
fuzzy inference
relational decomposition
linguistic decomposition
FPGA
Opis:
Metoda dekompozycji relacji rozmytych M. M. Gupty pozwala ograniczyć nakłady sprzętowe niezbędne w realizacji układowej systemów relacyjnych, jednak charakteryzuje się wysokim nakładem obliczeniowym. Tę niekorzystną własność można wyeliminować poprzez rozszerzenie metody podstawowej na płaszczyznę lingwistyczną. Podejście to pozwala wykorzystać uzyskane wyniki w realizacji zarówno systemów regułowych, relacyjnych, jak i mieszanych. W pracy przedstawiono sprzętowy modułu realizujący proces dekompozycji lingwistycznej bazy wiedzy zaimplementowany w systemie wnioskowania przybliżonego FPGA-FIS.
The hardware cost of the FATI relational fuzzy inference system can be reduced using M. M. Gupta's decomposition technique. It is based at projection operation defined for fuzzy relation. A lot of time is required to compute a global relation and a large memory to store it. In the paper has been proposed a modified M. M. Gupta's decomposition method expanded on linguistic level. It allows reducing hardware cost of the implementation of the FITA or FITA/FATI fuzzy inference systems. It can be implemented as a hardware unit in an FPGA structure to decrease an initialization time of the FPGA-FIS system.
Źródło:
Pomiary Automatyka Kontrola; 2007, R. 53, nr 7, 7; 33-35
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sprzętowa implementacja algorytmów dekompozycji lingwistycznej opartych na podziale bazy wiedzy w układzie FPGA
Hardware implementation of linguistic de-composition algorithms based on partitioning the knowledge base in the FPGA chip
Autorzy:
Wyrwoł, B.
Powiązania:
https://bibliotekanauki.pl/articles/972152.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
funkcja przynależności
reguła rozmyta
reguła sprzeczna
relacja rozmyta
baza wiedzy
dekompozycja relacyjna
dekompozycja lingwistyczna
system regułowy FITA
system relacyjny FATI
wnioskowanie przybliżone
FPGA
membership function
fuzzy rule
inconsistent rule
fuzzy relation
knowledge base
relational decomposition
linguistic decomposition
First Inference Then Aggregation system (FITA)
First Aggregation Then Inference system (FATI)
fuzzy inference
Opis:
Układowe realizacje systemów wnioskowania przybliżonego wymagają często znacznych nakładów. Zmniejszenie ich jest możliwe poprzez zastosowanie metody dekompozycji Gupty i przedstawieniu systemu jako struktury hierarchicznej. W celu wyeliminowania jej niekorzystnych własności konieczny jest wstępny podział bazy wiedzy. Zaproponowana została metoda najlepszego wyboru wykorzystująca wybrane algorytmy podziału, zaimplementowana w sprzętowym systemie wnioskowania przybliżonego FPGA-FIS.
The hardware cost of a fuzzy inference system can be reduced using the Gupta's relational decomposition technique [1]. The system can be represented as a hierarchical architecture that comprises a set of Single Input Single Output subsystems (Fig. 1). The decomposition has some disadvantages, computation of the global relation ℜ is an extremely time-consuming process and a large memory is necessary to store it. They can be eliminated if projection is expanded on linguistic level and decomposition is used for the knowledge base (1), (Fig. 2) [2]. The projection operation (on relational or linguistic level) in some cases can lead to inevitable loss of information because of its approximate nature [3]. To avoid the inference error (the output result is more fuzzy than that obtained in the classical system architecture (3)) methods for partitioning (5) the knowledge base KB[Y , XK,? , X1] into p subbases without inconsistent rules (4) are proposed [4]. In Section 3 the methods based on partitioning towards a defined input linguistic variable (Fig. 3) and elimination of the inconsistent rules (Fig. 4) are described [5, 6]. The algorithms are simple and fast but the results are not optimal in all cases (hardware cost depends on the number of subsystems p, Tab. 1). Thus, the method of the best choice is proposed and implemented in the FPGA fuzzy inference system as a DMU (Decomposition Management Unit) module (Fig. 6).
Źródło:
Pomiary Automatyka Kontrola; 2009, R. 55, nr 7, 7; 511-514
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Porównanie algorytmów wnioskowania klasycznego i rozmytego na przykładzie systemu wspomagania decyzji personalnych menedżera
Comparison of algorithms classic and fuzzy inference on example of manager’s personnel decision support system
Autorzy:
Ćwiklińska, I.
Nowak-Brzezińska, A.
Powiązania:
https://bibliotekanauki.pl/articles/327040.pdf
Data publikacji:
2016
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
regułowe bazy wiedzy
system ekspertowy
wnioskowanie klasyczne
wnioskowanie rozmyte
rule-based knowledge base
expert systems
classic inference
fuzzy inference
Opis:
Celem pracy jest porównanie działania algorytmów wnioskowania dwuwartościowego i rozmytego. Artykuł zawiera opis teoretycznych podstaw działania obu algorytmów, użycia każdego z nich w innej wersji systemu wspomagania decyzji menedżera. Następnie pokazano bazę wiedzy oraz dokładny algorytm wnioskowania, a także przykład użycia w praktyce systemu z wnioskowaniem klasycznym. Ostatnią częścią pracy jest opis analizy podobieństw i różnic pomiędzy algorytmami oraz wynikających z niej wniosków.
The aim of the study is to compare operation of divalent and fuzzy inference. The article contains describing the theoretical basis of operation of both algorithms and illustrated is to use each of them with a different version of the manager’s decision support system. Next is shown knowledge base and accurate inference algorithm and also example of use system of classic inference in practice. The last part of the work is to describe the analysis of the similarities and differences between algorithms and of its conclusions.
Źródło:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska; 2016, 92; 21-30
1641-3466
Pojawia się w:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies