Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "frequency signal" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Estimation of the Fundamental Frequency of the Speech Signal Compressed by MP3 Algorithm
Autorzy:
Milivojević, Z. N.
Brodić, D.
Powiązania:
https://bibliotekanauki.pl/articles/177285.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fundamental frequency
speech compression
speech processing
signal representation
MP3
Opis:
The paper analyzes the estimation of the fundamental frequency from the real speech signal which is obtained by recording the speaker in the real acoustic environment modeled by the MP3 method. The estimation was performed by the Picking-Peaks algorithm with implemented parametric cubic convolution (PCC) interpolation. The efficiency of PCC was tested for Catmull-Rom, Greville, and Greville two- parametric kernel. Depending on MSE, a window that gives optimal results was chosen.
Źródło:
Archives of Acoustics; 2013, 38, 3; 363-373
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Speech Emotion Recognition Based on Voice Fundamental Frequency
Autorzy:
Dimitrova-Grekow, Teodora
Klis, Aneta
Igras-Cybulska, Magdalena
Powiązania:
https://bibliotekanauki.pl/articles/177227.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
emotion recognition
speech signal analysis
voice analysis
fundamental frequency
speech corpora
Opis:
The human voice is one of the basic means of communication, thanks to which one also can easily convey the emotional state. This paper presents experiments on emotion recognition in human speech based on the fundamental frequency. AGH Emotional Speech Corpus was used. This database consists of audio samples of seven emotions acted by 12 different speakers (6 female and 6 male). We explored phrases of all the emotions – all together and in various combinations. Fast Fourier Transformation and magnitude spectrum analysis were applied to extract the fundamental tone out of the speech audio samples. After extraction of several statistical features of the fundamental frequency, we studied if they carry information on the emotional state of the speaker applying different AI methods. Analysis of the outcome data was conducted with classifiers: K-Nearest Neighbours with local induction, Random Forest, Bagging, JRip, and Random Subspace Method from algorithms collection for data mining WEKA. The results prove that the fundamental frequency is a prospective choice for further experiments.
Źródło:
Archives of Acoustics; 2019, 44, 2; 277-286
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnostic significance of phase spectrum in acoustic analysis of pathological voice
Diagnostyczne znaczenie widma fazowego w analizie akustycznej głosu patologicznego
Autorzy:
Samborska-Owczarek, A.
Powiązania:
https://bibliotekanauki.pl/articles/153586.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
analiza akustyczna
sygnał mowy
przetwarzanie mowy
częstotliwość podstawowa
widmo fazowe
ekstrakcja cech
GIRBAS
acoustic analysis
voice signal
speech processing
fundamental frequency
F0
phase spectrum
features extraction
Opis:
The paper regards the possibility of using new numerical features extracted from the phase spectrum of a speech signal for voice quality estimation in acoustic analysis for medical purposes. This novel approach does not require detection or estimation of the fundamental frequency and works on all types of speech signal: euphonic, dysphonic and aphonic as well. The experiment results presented in the paper are very promising: the developed F0-independant voice features are strongly correlated with two voice quality indicators: grade of hoarseness G (r>0.8) and roughness R (r>0.75) from GIRBAS scale, and exceed the standard voice parameters: jitter and shimmer.
Artykuł dotyczy możliwości ekstrakcji cech numerycznych z widma fazowego sygnału mowy w celu wykorzystania w analizie akustycznej na potrzeby medyczne. Podejście to umożliwia uzależnienie analizy akustycznej od zawodnych metod wykrywania/wyznaczania częstotliwości podstawowej (tonu krtaniowego) i dzięki temu przeznaczone jest do badania wszystkich typów sygnału mowy (również afonicznych). Wyniki eksperymentu są bardzo obiecujące - proponowane cechy Ph1 i Ph2 są silnie skorelowane z dwoma kategoriami percepcyjnymi: stopniem chrypki (r>0.8) oraz szorstkością głosu (r>0.75) ze skali GIRBAS, wykazując silniejsze znaczenie diagnostyczne niż znane i stosowane od dawna wskaźniki jitter i shimmer. Proponowane podejście oprócz skuteczności charakteryzuje się szeregiem dodatkowych korzyści: algorytm metody z powodu niskiej złożoności jest szybki i niekosztowny, interpretacja matematyczna jest prosta i jednoznaczna oraz spójna z obserwowanym obrazem widma fazowego głosu. Ponadto uniezależnienie od detekcji częstotliwości podstawowej sprawia, że algorytm jest deterministyczny oraz efektywny dla każdego typu sygnału mowy.
Źródło:
Pomiary Automatyka Kontrola; 2010, R. 56, nr 12, 12; 1547-1550
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies