Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Mielczarek, Dominik" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
A Critical Study of Usefulness of Selected Functional Classifiers in Economics
Krytyczna analiza wybranych klasyfikatorów dla danych funkcjonalnych w kontekście ich zastosowań w ekonomii
Autorzy:
Kosiorowski, Daniel
Mielczarek, Dominik
Rydlewski, Jerzy Piotr
Powiązania:
https://bibliotekanauki.pl/articles/660107.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
klasyfikator funkcjonalny
analiza danych funkcjonalnych
metody odporne
barometr optymizmu w ekonomii
functional classifier
functional data analysis
robust methods
economic optimism barometer
Opis:
W artykule przeprowadzono krytyczną analizę najbardziej znanych klasyfikatorów dla danych funkcjonalnych. Ponadto zaproponowano nowy klasyfikator dla danych funkcjonalnych. Przedyskutowano pewne, związane z odpornością, własności rozważanych klasyfikatorów. Wypracowane w artykule podejście może zostać użyte do przewidywania stanu gospodarki na podstawie indeksu mierzącego optymizm konsumentów – CCI (Consumer Confidence Index) oraz indeksu odzwierciedlającego optymizm w sektorze przemysłowym – IPI (Industrial Price Index), przy czym wykorzystuje się nie tylko skalarne wartości indeksu, lecz także całą trajektorię/kształt funkcji opisującej dany indeks. W związku z tym nasze rozważania mogą być pomocne w skonstruowaniu lepszego barometru stanu gospodarki. O ile wiadomo autorom, jest to pierwsze porównanie klasyfikatorów dla danych funkcjonalnych ze względu na kryterium ich użyteczności aplikacyjnej w ekonomii. Głównym celem artykułu jest zaprezentowanie, jak mała frakcja obserwacji nietypowych w próbce uczącej, będących liniowo niezależnymi z próbką uczącą, która z kolei składa się z funkcji prawie liniowo zależnych, jest w stanie poważnie zaburzyć wyniki klasyfikacji dla wszystkich rozpatrywanych klasyfikatorów.
In this paper we conduct a critical analysis of the most popular functional classifiers. Moreover, we propose a new classifier for functional data. Some robustness properties of the functional classifiers are discussed as well. We can use an approach worked out in this paper to predict the expected state of the economy from aggregated Consumer Confidence Index (CCI, measuring consumers optimism) and Industrial Price Index (IPI, reflecting a degree of optimism in industry sector) exploiting not only scalar values of the indices but also the trajectories/shapes of functions describing the indices. Thus our considerations may be helpful in constructing a better economic barometer. As far as we know, this is the first comparison of functional classifiers with respect to a criterion of their usefulness in economic applications. The main result of the paper is a presentation of how a small fraction of outliers in a training sample, which are linearly independent from the training sample, consisting of almost linearly dependent functions, corrupt all analysed classifiers.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2020, 2, 347; 71-90
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting of a Hierarchical Functional Time Series on Example of Macromodel for the Day and Night Air Pollution in Silesia Region — A Critical Overview
Autorzy:
Kosiorowski, Daniel
Mielczarek, Dominik
Rydlewski, Jerzy P.
Powiązania:
https://bibliotekanauki.pl/articles/2076274.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
day and night air pollution
functional data analysis
functionalmedian
hierarchical time series
reconciliation of forecasts
Opis:
In economics we often face a system which intrinsically imposes a structure of hierarchy of its components, i.e., in modeling trade accounts related to foreign exchange or in optimization of regional air protection policy. A problem of reconciliation of forecasts obtained on different levels of hierarchy has been addressed in the statistical and econometric literature many times and concerns bringing together forecasts obtained independently at different levels of hierarchy. This paper deals with this issue with regard to a hierarchical functional time series. We present and critically discuss a state of art and indicate opportunities of an application of these methods to a certain environment protection problem. We critically compare the best predictor known from the literature with our own original proposal. Within the paper we study a macromodel describing the day and night air pollution in Silesia region divided into five subregions.
Źródło:
Central European Journal of Economic Modelling and Econometrics; 2018, 1; 53-73
2080-0886
2080-119X
Pojawia się w:
Central European Journal of Economic Modelling and Econometrics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies