Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "FSP" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Effect of TiC Reinforcement on Wear Resistance of Magnesium Matrix Composite by FSP
Autorzy:
Singh, Balraj
Singh, Jagdev
Singh, Ravinder Joshi
Powiązania:
https://bibliotekanauki.pl/articles/2048864.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
friction stir processing
FSP
wear behavior
surface composites
Mg composites
TiC composite
Opis:
In the current study, wear performance of pure magnesium (Mg) and composite fabricated with titanium carbide (TiC) reinforcement is investigated under various loading and sliding velocity conditions. The Mg-matrix composite is prepared by friction stir processing (FSP) carried out at optimized values of process parameters. Sliding wear tests on Mg and friction stir processed (FSPed) Mg+TiC surface composite were done on pin-on-disc configuration. The consequence of the normal load applied and sliding velocity on wear behaviour of the two materials is evaluated by performing the tests at two normal loads of 6 N and 12 N and three sliding speeds of 0.5 m/s, 1.5 m/s and 4.5 m/s. FSPed composite found to exhibit an enhanced wear resistance as compared to that of pure Mg. To get an insight into the possible types of mechanisms for wear of the composites sample under varying load and sliding speeds conditions, the worn test specimens are subjected to scanning electron microscopy (SEM). SEM/EDS analysis revealed that oxidation, ploughing, trailing edge and 3-body abrasive wear were the predominant mechanisms for the wear of samples at a different set of experimental conditions. The tensile strength of the FSPed surface composite was found to be 25% higher than pure Mg. Wear resistance was found to increase by about 33%.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 1; 293-302
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Microstructural Characterisation of Friction Stir Processed Cast AlSi9Mg Aluminium Alloy
Autorzy:
Węglowski, M. S.
Powiązania:
https://bibliotekanauki.pl/articles/379980.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
cast aluminium alloy
friction stir processing
FSP
microstructure
stop aluminium
obróbka tarciowa
mikrostruktura
Opis:
Aluminium alloy castings become more popular when a refined microstructure and a uniform distribution of Si particles are easily produced. One of the technologies that can fulfil these requirements is Friction Stir Processing (FSP). Therefore, the formation of various microstructural regions during FSP of AlSi9Mg alloy has been studied. It is presented that each of the regions are characterized by unique microstructures. Prior to FSP, the microstructure of a representative as-cast aluminium alloy was composed of Al dendrites and a nonuniform distribution of Si and Fe. FSP microstructurally modified and significantly refined the as-cast material, effectively eliminating the microstructural segregation and porosity of the base material. The characteristic microstructures are reflected in the hardness distribution. The hardness of the modified area was different from the base material.
Źródło:
Archives of Foundry Engineering; 2014, 14, 3 spec.; 75-78
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of friction stir processing (FSP) on microstructure and hardness of AlMg10/SiC composite
Autorzy:
Iwaszko, J.
Kudła, K.
Powiązania:
https://bibliotekanauki.pl/articles/200735.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
friction stir processing
AlMg10/SiC composite
microstructure
kompozyt AlMg10/SiC
mikrostruktura
FSP
Opis:
The AlMg10 aluminum alloy reinforced with SiC particles was subjected to friction stir processing (FSP). The composite was made by mechanical mixing and gravity casting. The mass fraction of SiC particles in the composite was about 10%. Evaluation of the effects of FSP treatment was performed by means of light microscopy, scanning electron microscopy, EDS and hardness measurement. It was found that the inhomogeneous distribution of SiC particles and their agglomeration, which were observable in the cast composite, were completely eliminated after FSP modification. The treatment was also accompanied by homogenisation of the material in the mixing zone as well as fragmentation of both the matrix grain of the composite and SiC particles. In the case of SiC particles, a change in their shape was also observed. In the as-cast composite, particles with dimensions from 30 to 60 μm and a sharp-edged polyhedral shape prevailed, while in the material subjected to friction treatment, particles with dimensions from 20 to 40 μm and a more equiangular shape prevailed. Pores and other material discontinuities occurring frequently in the as-cast composite were completely eliminated after friction modification. The recorded changes in the microstructure of the material were accompanied by an increase in the hardness of the composite by nearly 35%. The conducted investigations have shown that FSP modification of the AlMg10/SiC composite made by the casting method leads to favorable microstructural changes in the surface layer and may be an alternative solution to other methods and technologies used in surface engineering.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2019, 67, 2; 185-192
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design of Functionally Graded Composites through Friction Stir Processing
Autorzy:
Sai, B. V. Hima Sekhar
Powiązania:
https://bibliotekanauki.pl/articles/2052243.pdf
Data publikacji:
2021
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
friction stir processing
functionally graded material
reinforcements
multi-pass FSP
zgrzewanie tarciowe z przemieszaniem
funkcjonalny materiał gradientowy
wzmocnienie
Opis:
An Investigation was conducted to produce Aluminium based Functionally graded material (FGM) composites by Friction stir processing (FSP). A reinforcement strategy featuring the use of Alumina and TiC reinforcements was investigated, where holes were drilled in an Aluminium plate, filled with reinforcements and stirred using FSP. A mathematical model was formulated for the positioning of holes in such a manner that the composition of the reinforcements varies from maximum to minimum over a given length. Samples were subjected to various numbers of FSP passes from one to three with a 100% overlap and its influence on particle distribution and homogeneity was studied using Scanning electron microscopy (SEM) at cross sections parallel to the tool traverse direction. A progressive gradient in hardness values was observed for the surface composites at all the passes.
Źródło:
Journal of Mechanical and Energy Engineering; 2021, 5, 2; 95-102
2544-0780
2544-1671
Pojawia się w:
Journal of Mechanical and Energy Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Role of tool rotational speed on the tribological characteristics of magnesium based AZ61A/TiC composite developed via friction stir processing route
Autorzy:
Sagar, P.
Handa, A.
Powiązania:
https://bibliotekanauki.pl/articles/367279.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
friction stir processing
AZ61A magnesium alloy
microhardness
wear
proces tarciowej modyfikacji warstw wierzchnich z mieszaniem materiału
FSP
stop magnezu AZ61
mikrotwardość
zużycie
Opis:
Purpose: A new composite material was prepared and Different properties such as hardness and tribological behaviour of the fabricated metal matrix composite (MMC) was investigated and compared with the base AZ61A magnesium alloy. Design/methodology/approach: For the current research work, state-of-the-art technology, Friction stir processing (FSP) was performed to develop magnesium based AZ61A/TiC composite at optimized set of machine parameters. Findings: Increasing tool rotational speed ultimately leads in enhanced hardness, which further gives superior tribological properties as compared to base AZ61A alloy. Wear observations suggests a combination of abrasive and adhesive wear mechanism. Research limitations/implications: More microstructural and mechanical properties can be examined. Practical implications: The idea behind selecting AZ61A is mainly due to its increasing use in bicycle pedals and military equipment’s where at certain places it needs to encounter friction. In this current work, microhardness study and wear behaviour of AZ61A/TiC composite processed via FSP were examined. Originality/value: Paper is completely new and no work has been done till date considering this material and preparing composite with nanoparticles TiC.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2020, 101, 2; 60-75
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies