Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "spectroscopy UV" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Effect of UV irradiation on free radicals in synthetic melanin and melanin biopolymer from Sepia offi cinalis : EPR examination
Autorzy:
Zdybel, M.
Pilawa, B.
Powiązania:
https://bibliotekanauki.pl/articles/148610.pdf
Data publikacji:
2015
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
EPR spectroscopy
free radicals
melanin
Sepia officinalis
UV irradiation
Opis:
Free radicals in synthetic melanin and melanin from Sepia officinalis were studied by electron paramagnetic resonance (EPR) spectroscopy. The effect of time of ultraviolet (UV) irradiation on free radicals in these melanins was tested. The samples were exposed to UV during 15, 30, and 60 minutes. EPR spectra were measured with microwaves from an X-band (9.3 GHz) in the range of microwave power of 2.2–70 mW. The performed EPR examinations indicate that high concentrations (~1021–1022 spin/g) of o-semiquinone free radicals with g factors of 2.0039–2.0045 exist in all the tested samples. For nonirradiated samples, free radical concentration was higher in natural melanin than in synthetic melanin. UV irradiation caused the increase of free radical concentrations in synthetic melanin samples and this effect depends on the time of irradiation. The largest free radical formation in the both melanins was obtained for 60 min of UV irradiation. Free radical concentrations after the UV irradiation of melanins during 30 min were lower than during irradiation by 15 min, and probably this effect was the result of recombination of the radiatively formed free radicals. EPR lines of the tested samples broadened with increasing microwave power, so these lines were homogeneously broadened. The two types of melanins differed in the time of spin-lattice relaxation processes. Slower spin-lattice relaxation processes exist in melanin from Sepia officinalis than in synthetic melanin. UV irradiation did not change the time of spin-lattice relaxation processes in the tested melanins. The performed studies confirmed the usefulness of EPR spectroscopy in cosmetology and medicine.
Źródło:
Nukleonika; 2015, 60, No. 3, part 1; 483-488
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
EPR study of free radicals formed in fusidic acid and neomycin under UV irradiation
Autorzy:
Pierzchała, Ewa
Ramos, Paweł
Pilawa, Barbara
Powiązania:
https://bibliotekanauki.pl/articles/895647.pdf
Data publikacji:
2019-04-30
Wydawca:
Polskie Towarzystwo Farmaceutyczne
Tematy:
free radicals
EPR spectroscopy
Dermatology
UV irradiation
fusidic acid
neomycin
Opis:
Free radicals in UV irradiated antibiotics used in dermatology were examined. Concentrations of free radicals in fusidic acid and neomycin, were determined. EPR spectra of the tested antibiotics were measured by electron paramagnetic resonance spectrometer with magnetic modulation of 100 kHz and numerical acquisition system the Rapid Scan Unit. The influence of microwave powers in the range of 2.2-70 mW on the spectra was obtained. Amplitudes (A) and linewidths (ΔBpp) of the EPR spectra, were analysed. The EPR spectra were homogeneously broadened. Fast spin-lattice relaxation processes existed in UV irradiated fusidic acid and neomycin, which EPR spectra were not saturated up to 70 mW. The influence of the time of UV irradiation on free radicals in the samples was observed. The samples were irradiated by UVA (315-400 nm) in the 30, 60, and 90 minute period. Free radical concentrations in the tested antibiotics exposed to UV were proportional to the amplitudes (A) of the EPR spectra. The highest amplitudes (A) were observed for the UV irradiated antibiotics during 60 minutes. The higher amplitudes (A) characterized fusidic acid than neomycin. Fusidic acid and neomycin used to treat bacterial infection of skin under UV irradiation may produce free radical toxic effects. The stronger photosensitivity characterized fusidic acid relatively to neomycin. EPR spectroscopy is the useful method to examine free radicals formed in antibiotics during photolysis.
Źródło:
Acta Poloniae Pharmaceutica - Drug Research; 2019, 76, 2; 215-223
0001-6837
2353-5288
Pojawia się w:
Acta Poloniae Pharmaceutica - Drug Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Free radical formation in salicylic acid and heating parameters – application of EPR, UV-Vis, TGA and colorimetry examination to optimize thermal sterilization
Autorzy:
Ramos, Paweł
Pilawa, Barbara
Powiązania:
https://bibliotekanauki.pl/articles/895669.pdf
Data publikacji:
2020-06-29
Wydawca:
Polskie Towarzystwo Farmaceutyczne
Tematy:
free radicals
EPR spectroscopy
salicylic acid
UV-Vis spectrophotometry
thermogravimetry
thermal sterilization
Opis:
Salicylic acid heated at different temperatures and times was examined by an X-band (9.3 GHz) EPR spectroscopy, UV-Vis spectrophotometry, TGA and colorimetry test to optimize its thermal sterilization process. Free radical formation (~1018 spin/g) during thermal sterilization of salicylic acid according to the pharmaceutical norms at temperature 120oC and time of 120 minutes was compared with those for heating at the new tested temperatures and times: 130oC and 60 minutes, and 140oC and 30 minutes. It was obtained that the relatively lower free radical concentrations characterized salicylic acid heated at temperatures (times): 120oC (120 minutes), and 130oC (60 minutes), than at temperature (time) 140oC (30 minutes). So treatment at temperature 120oC during 120 minutes, and temperature 130oC during 60 minutes, were recommended as the optimal for thermal sterilization of salicylic acid. Salicylic acid should not be sterilized at temperature 140oC during 30 minutes, because of the highest free radical formation. Free radical systems of thermally treated salicylic acid revealed complex character. Fast spin-lattice relaxation processes existed in heated salicylic acid. Strong dipolar interactions characterized all the heated salicylic acid samples. EPR spectroscopy, UV-Vis spectrophotometry, thermogravimetry, and color measurement may be helpful besides microbiological analysis to optimize thermal sterilization conditions of salicylic acid.
Źródło:
Acta Poloniae Pharmaceutica - Drug Research; 2020, 77, 3; 431-441
0001-6837
2353-5288
Pojawia się w:
Acta Poloniae Pharmaceutica - Drug Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies