- Tytuł:
-
Application of neural networks for the prediction of rock fragmentation in Chadormalu iron mine
Zastosowanie sieci neuronowych do prognozowania stopnia rozdrobnienia skał w kopalni rud żelaza w Chadormalu - Autorzy:
-
Monjezi, M.
Ahmadi, Z.
Khandelwal, M. - Powiązania:
- https://bibliotekanauki.pl/articles/219333.pdf
- Data publikacji:
- 2012
- Wydawca:
- Polska Akademia Nauk. Czytelnia Czasopism PAN
- Tematy:
-
stopień rozdrobnienia
prace strzałowe
sztuczna sieć neuronowa (ANN)
kopalnia rudy żelaza Charnomalu
fragmentation
blasting operations
ANN
Chadormalu iron mine - Opis:
-
Most open-pit mining operations employ blasting for primary breakage of the in-situ rock mass. Inappropriate blasting techniques can result in excessive damage to the wall rock, decreasing stability and increasing water influx. In addition, it will result in either over and/or under breakage of rocks. The presence of over broken rocks can result in decreased wall stability and require additional excavation. In contrast, the presence of under broken rocks may require secondary blasting and additional crushing. Since blasting is a major cost factor, both cases (under and over breakage) create additional costs reflected in the increase of the operation and maintenance of the machinery. Quick and accurate measurements of fragment size distribution are essential for managing fragmented rock and other materials. Various fragmentation measurement techniques are available and are being used by industry/researchers but most of the methods are time consuming and not precise. An ideally performed blasting operation enormously influences the overall mining cost. This aim can be achieved by proper prediction and attenuation of fragmentation. Prediction of fragmentation is essential for optimizing blasting operation. Poor performance of the empirical models for predicting fragmentation has urged the application of new approaches. In this paper, artificial neural network (ANN) method is implemented to develop a model to predict rock fragmentation size distribution due to blasting in Chadormalu iron mine, Iran. In the development of the proposed ANN model, ten parameters such as UCS, drilling rate, water content, burden, spacing, stemming, hole diameter, bench height, powder factor and charge per delay were incorporated. Training and testing of the model was performed by the back-propagation algorithm using 97 datasets. A four-layer ANN was found to be optimum with architecture of 10-7-5-1. A comparison has made between measured results of fragmentation with predicted results of fragmentation by ANN and multiple regression model. Sensitivity analysis was also performed to understand the effect of each influencing parameters on rock fragmentation.
W większości kopalń odkrywkowych stosuje się prace strzałowe w celu wstępnego rozbicia skał górotworu in situ. Niewłaściwe prowadzenie prac strzałowych spowodować może nadmierne uszkodzenie skał, obniżając stabilność górotworu i powodując zwiększony napływ wód. Ponadto, prowadzić może do nadmiernego lub niedostatecznego rozdrobnienia skał. Obecność nadmiernie rozdrobnionych skał spowodować może zmniejszenie stabilności ścian i wymaga dodatkowego odgruzowania. Z kolei obecność niedostatecznie rozdrobnionych skał powoduje konieczność ponownego wykonania prac strzałowych celem rozdrobnienia dalszego skały. Z uwagi na to, że prace strzałowe stanowią zasadniczy element kosztów, obydwa przypadki (niedostateczne lub nadmierne rozdrobnienie skał) mogą pociągać za sobą dodatkowe koszty, odzwierciedlone w zwiększonych kosztach eksploatacji sprzętu. Szybkie i dokładne pomiary rozkładu wielkości fragmentów skał są niezbędne dla zapewnienia właściwej gospodarki rozdrobnionymi skałami i pozostałymi materiałami. Istnieje wiele metod pomiarów i są one szeroko wykorzystywane przez badaczy oraz w przemyśle, jednakże większość metod okazuje się czasochłonna i niewystarczająco dokładna. Idealne przeprowadzenie prac strzałowych w znacznym stopniu przyczynia się do ograniczenia kosztów prowadzenia prac górniczych. Cel ten osiągnąć można poprzez odpowiednie prognozowanie i kontrolowanie stopnia rozdrobnienia. Prognozowanie konieczne jest dla optymalizacji prowadzenia prac strzałowych. Niska skuteczność metod empirycznych wykorzystywanych do prognozowania stopnia rozdrobnienia skał stanowi zachętę do stosowania nowego podejścia. W artykule przedstawiono zastosowanie metody sztucznych sieci neuronowych (ANN) do opracowania modelu prognozowania rozkładu wielkości skal rozdrobnionych w wyniku prac strzałowych w kopalni Chadormalu, w Iranie. W opracowanym modelu ANN uwzględniono dziesięć parametrów: wytrzymałość skały na ściskanie jednoosiowe (UCS), prędkość wiercenia, zawartość wody, rodzaj nadkładu, rozstawienie, rodzaj przybitki, wysokość ławy, rodzaj materiału wybuchowego oraz wielkość ładunku w stosunku do zwłoki czasowej. Uczenie i testowanie modelu odbywa się przy użyciu algorytmu propagacji wstecznej (back-propagation) z wykorzystaniem 97 baz danych. Stwierdzono, że optymalna sieć złożona jest z czterech warstw a jej architekturę opisać można jako 10-7-5-1. Wyniki pomiarów stopnia rozdrobnienia porównano z wyniki prognoz stopnia rozdrobnienia przeprowadzonych przy pomocy sieci neuronowej w oparciu o metodę regresji wielokrotnej. Przeprowadzono analizę wrażliwości dla lepszego zrozumienia wpływu poszczególnych parametrów na stopień rozdrobnienia skały. - Źródło:
-
Archives of Mining Sciences; 2012, 57, 3; 787-798
0860-7001 - Pojawia się w:
- Archives of Mining Sciences
- Dostawca treści:
- Biblioteka Nauki