- Tytuł:
- Mechanical Effects on Different Solid to Liquid Ratio of Geopolymer Filler in Epoxy Resin
- Autorzy:
-
Hashim, Mohammad Firdaus Abu
Ghazali, Che Mohd Ruzaidi
Daud, Yusrina Mat
Faris, Meor Ahmad
Abdullah, Mohd Mustafa Al Bakri
Zainal, Farah Farhana
Hasyim, Saloma
Lokman, Muhammad Taqiyuddin - Powiązania:
- https://bibliotekanauki.pl/articles/2048832.pdf
- Data publikacji:
- 2022
- Wydawca:
- Polska Akademia Nauk. Czytelnia Czasopism PAN
- Tematy:
-
geopolymer filler
fly ash
tensile
flexural
morphology
solid-liquid ratio - Opis:
- Geopolymer is formed from the alkali activation of materials rich in Si and Al content with the addition of a silicate solution to enhance the properties of the materials. This paper presents research on the mechanical properties of fly ash-based geopolymer filler in epoxy resin by varying different solid to liquid ratios using sodium hydroxide and sodium silicate as the alkaline activator. However, the common problem observed from the solid to liquid ratio is the influence of curing time and compressive strength of geopolymer to have the best mechanical property. The mix design for geopolymers of solid to liquid ratio is essential in developing the geopolymer’s mechanical strength. A series of epoxy filled with fly ash-based geopolymer materials with different solid to liquid ratio, which is prepared from 0.5 to 2.5 solid to liquid ratio of alkaline activator. The tensile strength and flexural strength of the epoxy filled with fly ash-based geopolymer materials is determined using Universal Testing Machine under tensile and flexural mode. It was found that the optimum solid to liquid ratio is 2.0, with the optimum tensile and flexural strength value. However, both the tensile and flexural properties of epoxy filled with fly ash-based geopolymer suddenly decrease at a 2.5 solid to liquid ratio. The strength is increasing with the increasing solid to liquid ratio sample of geopolymer filler content.
- Źródło:
-
Archives of Metallurgy and Materials; 2022, 67, 1; 215-220
1733-3490 - Pojawia się w:
- Archives of Metallurgy and Materials
- Dostawca treści:
- Biblioteka Nauki