Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "filter methods" wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
Comparison of the effectiveness of time series analysis methods: SMA, WMA, EMA, EWMA, and Kalman filter for data analysis
Porównanie skuteczności metod analizy szeregów czasowych: SMA, WMA, EMA, EWMA i filtr Kalmana do analizy danych
Autorzy:
Lotysh, Volodymyr
Gumeniuk, Larysa
Humeniuk, Pavlo
Powiązania:
https://bibliotekanauki.pl/articles/27315442.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
data analysis
modeling
moving average
Kalman filter
analiza danych
modelowanie
średnia ruchoma
filtr Kalmana
Opis:
In time series analysis, signal processing, and financial analysis, simple moving average (SMA), weighted moving average (WMA), exponential moving average (EMA), exponential weighted moving average (EWMA), and Kalman filter are widely used methods. Each method has its own strengths and weaknesses, and the choice of method depends on the specific application and data characteristics. It is important for researchers and practitionersto understand the properties and limitations of these methods in order to make informed decisions when analyzing time seriesdata. This study investigates the effectiveness of time series analysis methods using data modeled with a known exponential function with overlaid random noise. This approach allows for control of the underlying trend in the data while introducing the variability characteristic of real-world data. The relationships were written using scripts for the construction of dependencies, and graphical interpretation of the results is provided.
W analizie szeregów czasowych, przetwarzaniu sygnałów i analizie finansowej szeroko stosowane są: prosta średnia ruchoma (SMA), ważona średnia ruchoma (WMA), wykładnicza średniaruchoma (EMA), wykładniczo-ważona średnia ruchoma (EWMA) i filtr Kalmana. Każda z metod ma swoje mocne i słabe strony, a wybór metody zależy od konkretnego zastosowania i charakterystyki danych. Dla badaczyi praktyków ważne jest zrozumienie właściwości i ograniczeń tych metod w celu podejmowania świadomych decyzji podczas analizy danych szeregów czasowych. W niniejszej pracy zbadano skuteczność metod analizy szeregów czasowych z wykorzystaniem danych modelowanych znaną funkcją wykładniczą z nałożonym szumem losowym. Takie podejście pozwala na kontrolowanie głównego trendu w danych przy jednoczesnym wprowadzeniu zmienności typowej dla danych rzeczywistych. Do budowy zależności zostały napisane skrypty. Podanajest graficzna interpretacja wyników.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 3; 71--74
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Porównanie metod estymacji stanu systemów dynamicznych
Comparison of state estimation methods of dynamical systems
Autorzy:
Michalski, J.
Kozierski, P.
Ziętkiewicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/276016.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
estymacja stanu
układy dynamiczne
filtr Kalmana
rozszerzony filtr Kalmana
bezśladowy filtr Kalmana
filtr cząsteczkowy
wskaźniki jakości
state estimation
dynamical systems
Kalman Filter
extended Kalman filter
unscented Kalman filter
particle filter
quality indices
Opis:
W pracy poruszono problem estymacji stanu dla układów dynamicznych oraz przedstawiono wybrane jego rozwiązania. Zaproponowano cztery metody estymacji: rozszerzony filtr Kalmana, bezśladowy filtr Kalmana, filtr cząsteczkowy oraz filtr Kalmana, stosowany dla obiektów liniowych. Metody te zastosowano dla trzech obiektów nieliniowych oraz dla dwóch obiektów liniowych (systemy jedno- i wielowymiarowe). Wszystkie obiekty zostały opisane za pomocą równań stanu. Przedstawiono także trzy różne wskaźniki jakości, reprezentujące błędy względne oraz bezwzględne, a także porównano ich działanie dla różnego typu obiektów. W wyniku przeprowadzonych symulacji stwierdzono, że najlepszą jakość estymacji zapewnia filtr cząsteczkowy, ale jednocześnie ta metoda jest najwolniejsza.
In this paper the problem of state estimation of dynamical systems has been discussed and selected solutions have been presented. Four methods of state estimation have been proposed: Extended Kalman Filter, Unscented Kalman Filter, Particle Filter and Kalman Filter for a linear system. These methods have been applied to three nonlinear objects and to two linear objects (one- and multivariable systems). All plants have been described using state equations. Three quality indices has been used, which present relative and absolute errors. They were compared for different objects. As a result of the simulation, it was found that the best estimation quality is provided by the particle filter, but this method is also the slowest.
Źródło:
Pomiary Automatyka Robotyka; 2017, 21, 4; 41-47
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Układ akwizycji i archiwizacji parametrów ruchu układów mobilnych : metody matematyczne, filtry cyfrowe
The system of acquisition and archiving of motion parameters of mobile systems : mathematical methods, digital filters
Autorzy:
Grabiński, Jakub
Waluś, Konrad J.
Powiązania:
https://bibliotekanauki.pl/articles/316686.pdf
Data publikacji:
2019
Wydawca:
Instytut Naukowo-Wydawniczy "SPATIUM"
Tematy:
kąty Eulera
kwaterniony
filtr Kalmana
filtr Madgwicka
filtr komplementarny
Euler angles
quartered
Kalman filter
Madgwick filter
complementary filter
Opis:
W ramach pracy przedstawiono metody numeryczne oraz filtry cyfrowe umożliwiające korekcję sygnału pomiarowego uzyskanego podczas badań doświadczalnych parametrów ruchu pojazdu. Wykorzystany moduł pomiarowy nawigacji inercyjnej składa się z trójosiowych akcelerometrów, żyroskopów wykonanych w technologii MEMS oraz magnetometru. Zebrane dane pomiarowe umożliwiły odniesienie ich do punktu w przestrzeni trójwymiarowej, w celu wyznaczenia trajektorii ruchu pojazdu. W artykule przedstawiono metody numeryczne obrotu lokalnego układu współrzędnych do układu globalnego oraz wybrane filtry cyfrowe umożliwiające wygładzanie sygnału pomiarowego w czasie rzeczywistym.
The work presents numerical methods and digital filters that enable correction of the measurement signal obtained during experimental tests of vehicle motion parameters. The inertial navigation measuring module used consists of three-axis accelerometers, gyroscopes made in MEMS technology and a magnetometer. The collected measurement data made it possible to refer them to a point in three-dimensional space in order to determine the trajectory of vehicle movement. The article presents numerical methods of rotation of the local coordinate system to the global system and selected digital filters enabling smoothening the measurement signal in real time.
Źródło:
Autobusy : technika, eksploatacja, systemy transportowe; 2019, 20, 1-2; 228-233
1509-5878
2450-7725
Pojawia się w:
Autobusy : technika, eksploatacja, systemy transportowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study of the effectiveness of different Kalman filtering methods and smoothers in object tracking based on simulation tests
Autorzy:
Malinowski, M.
Kwiecień, J.
Powiązania:
https://bibliotekanauki.pl/articles/106773.pdf
Data publikacji:
2014
Wydawca:
Politechnika Warszawska. Wydział Geodezji i Kartografii
Tematy:
Kalman filtering
smoother
extended Kalman filter
derivative-free filtering
Central Difference Kalman Filter
unscented Kalman filter
object tracing
filtr Kalmana
filtracja
rozszerzony filtr Kalmana
EKF
bezśladowy filtr Kalmana
UKF
śledzenie obiektu
Opis:
In navigation practice, there are various navigational architecture and integration strategies of measuring instruments that affect the choice of the Kalman filtering algorithm. The analysis of different methods of Kalman filtration and associated smoothers applied in object tracing was made on the grounds of simulation tests of algorithms designed and presented in this paper. EKF (Extended Kalman Filter) filter based on approximation with (jacobians) partial derivations and derivative-free filters like UKF (Unscented Kalman Filter) and CDKF (Central Difference Kalman Filter) were implemented in comparison. For each method of filtration, appropriate smoothers EKS (Extended Kalman Smoother), UKS (Unscented Kalman Smoother) and CDKS (Central Difference Kalman Smoother) were presented as well. Algorithms performance is discussed on the theoretical base and simulation results of two cases are presented.
Źródło:
Reports on Geodesy and Geoinformatics; 2014, 97; 1-22
2391-8365
2391-8152
Pojawia się w:
Reports on Geodesy and Geoinformatics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies