Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kacprzyk, A." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
New developments in fuzzy clustering with emphasis on special types of tasks
Autorzy:
Viattchenin, D. A.
Owsiński, J. W.
Kacprzyk, J.
Powiązania:
https://bibliotekanauki.pl/articles/206677.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
clustering
fuzzy sets
possibilistic clustering
inference
three-way clustering
feature selection
Opis:
The paper is devoted to a survey of work done in fuzzy clustering, mainly during the first decade of the 21st century, and that with emphasis on various approachesto the problem, as well as various formulations of the very problem. That is why not only the classical formulations are treated, but several other problems, related to (the use of) clustering, like feature selection, inference systems, three-way clustering, and, on the other hand, such formulations of clustering as the possibilistic one or the one involving intuitionistic fuzzy sets. These are treated as the background for presentation of some specific ideas of the main author, concerning definite heuristic algorithms for effective solving of some of these problems.
Źródło:
Control and Cybernetics; 2018, 47, 2; 115-130
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new heuristic possibilistic clustering algorithm for feature selection
Autorzy:
Kacprzyk, J.
Owsinski, J. W.
Viattchenin, D. A.
Powiązania:
https://bibliotekanauki.pl/articles/384599.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
feature selection
fuzzy correlation measure
possibilistic clustering
heuristic possibilistic clustering
fuzzy cluster
Opis:
The paper deals with the problem of selection of the most informative features. A new effective and efficient heuristic possibilistic clustering algorithm for feature selection is proposed. First, a brief description of basic concepts of the heuristic approach to possibilistic clustering is provided. A technique of initial data preprocessing is described and a fuzzy correlation measure is considered. The new algorithm is described and then illustrated on the well-known Iris data set benchmark and the results obtained are compared with those by using the conventional, well-known and widely employed method of principal component analysis (PCA). Conclusions and suggestions for future research are given.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2014, 8, 2; 40-46
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies