Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Świtoński, M." wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Selection of the most important components from multispectral images for detection of tumor tissue
Autorzy:
Michalak, M.
Świtoński, A.
Stawarz, M.
Powiązania:
https://bibliotekanauki.pl/articles/951663.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie obrazów
analiza wielospektralna
obniżenie wymiarowości
wybór funkcji
pattern recognition
multispectral analysis
dimensionality reduction
feature selection
Opis:
The problem raised in this article is the selection of the most important components from multispectral images for the purpose of skin tumor tissue detection. It occured that 21 channel spectrum makes it possible to separate healthy and tumor regions almost perfectly. The disadvantage of this method is the duration of single picture acquisition because this process requires to keep the device very stable. In the paper two approaches to the problem are presented: hill climbing strategy and some ranking methods.
Źródło:
Journal of Medical Informatics & Technologies; 2011, 17; 303-308
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Local embedding and dimensionality reduction in detection of skin tumor tissue
Autorzy:
Michalak, M.
Świtoński, A.
Powiązania:
https://bibliotekanauki.pl/articles/333429.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie wzorców
analiza wielospektralna
redukcja wymiarowości
selekcja cech
pattern recognition
multispectral analysis
dimensionality reduction
feature selection
Opis:
This article shows the limitation of the usage of dimensionality reduction methods. For this purpose three algorithms were analyzed on the real medical data. This data are multispectral images of human skin labeled as tumor or non-tumor regions. The classification of new data required the special algorithm of new data mapping that is also described in the paper. Unfortunately, the final conclusion is that this kind of local embedding algorithms should not be recommended for this kind of analysis and prediction.
Źródło:
Journal of Medical Informatics & Technologies; 2012, 19; 59-65
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies