Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "pattern extraction" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Determination of the Optimal Threshold Value and Number of Keypoints in Scale Invariant Feature Transform-based Copy-Move Forgery Detection
Autorzy:
Isnanto, R. Rizal
Zahra, Ajub Ajulian
Santoso, Imam
Lubis, Muhammad Salman
Powiązania:
https://bibliotekanauki.pl/articles/227299.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
forgery
Gaussian noise
feature extraction
pattern matching
Euclidean distance
Opis:
The copy-move forgery detection (CMFD) begins with the preprocessing until the image is ready to process. Then, the image features are extracted using a feature-transform-based extraction called the scale-invariant feature transform (SIFT). The last step is features matching using Generalized 2 Nearest-Neighbor (G2NN) method with threshold values variation. The problem is what is the optimal threshold value and number of keypoints so that copy-move detection has the highest accuracy. The optimal threshold value and number of keypoints had determined so that the detection n has the highest accuracy. The research was carried out on images without noise and with Gaussian noise.
Źródło:
International Journal of Electronics and Telecommunications; 2020, 66, 3; 561-569
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Critical exponent analysis applied to surface EMG signals for multifunction myoelectric control
Autorzy:
Phinyomark, A.
Phothisonothai, M.
Phukpattaranont, P.
Limsakul, C.
Powiązania:
https://bibliotekanauki.pl/articles/220544.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
biomedical signal processing
electromyography signal
feature extraction
fractal analysis
human machine interface
pattern classification
Opis:
Based on recent advances in non-linear analysis, the surface electromyography (sEMG) signal has been studied from the viewpoints of self-affinity and complexity. In this study, we examine usage of critical exponent analysis (CE) method, a fractal dimension (FD) estimator, to study properties of the sEMG signal and to deploy these properties to characterize different movements for gesture recognition. SEMG signals were recorded from thirty subjects with seven hand movements and eight muscle channels. Mean values and coefficient of variations of the CE from all experiments show that there are larger variations between hand movement types but there is small variation within the same type. It also shows that the CE feature related to the self-affine property for the sEMG signal extracted from different activities is in the range of 1.855∼2.754. These results have also been evaluated by analysis-of-variance (p-value). Results show that the CE feature is more suitable to use as a learning parameter for a classifier compared with other representative features including root mean square, median frequency and Higuchi's method. Most p-values of the CE feature were less than 0.0001. Thus the FD that is computed by the CE method can be applied to be used as a feature for a wide variety of sEMG applications.
Źródło:
Metrology and Measurement Systems; 2011, 18, 4; 645-658
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rgb-D face recognition using LBP-DCT algorithm
Autorzy:
Kumar, Sunil B L
Kumari, Sharmila M
Powiązania:
https://bibliotekanauki.pl/articles/1956066.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
RGB-D
kinect
local binary pattern
pattern recognition
feature extraction
histogram
face recognition
lokalny wzorzec binarny
rozpoznawanie wzorców
wyodrębnianie cech
rozpoznawanie twarzy
Opis:
Face recognition is one of the applications in image processing that recognizes or checks an individual's identity. 2D images are used to identify the face, but the problem is that this kind of image is very sensitive to changes in lighting and various angles of view. The images captured by 3D camera and stereo camera can also be used for recognition, but fairly long processing times is needed. RGB-D images that Kinect produces are used as a new alternative approach to 3D images. Such cameras cost less and can be used in any situation and any environment. This paper shows the face recognition algorithms’ performance using RGB-D images. These algorithms calculate the descriptor which uses RGB and Depth map faces based on local binary pattern. Those images are also tested for the fusion of LBP and DCT methods. The fusion of LBP and DCT approach produces a recognition rate of 97.5% during the experiment
Źródło:
Applied Computer Science; 2021, 17, 3; 73-81
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Personal identification using retina
Autorzy:
Choraś, R.S.
Powiązania:
https://bibliotekanauki.pl/articles/333033.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
siatkówka
biometria siatkówki
wybór cech obrazu
retina
retina biometrics
vessel pattern
feature extraction
Gabor transform
feature vector
matching
Opis:
This paper proposes a biometric system for authentication that uses the retina blood vessel pattern. The retina biometric analyzes the layer of blood vessels located at the back of the eye. The blood vessels at the back of the eye have a unique pattern, from eye to eye and person to person. The retina, a layer of blood vessels located at the back of the eye, forms an identity card for the individual under investigation. In particular retinal recognition creates an ”eye signature” from its vascular configuration and its artificial duplication is thought to be virtually impossible.
Źródło:
Journal of Medical Informatics & Technologies; 2009, 13; 53-58
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cortical pattern detection for the developing brain: a 3D vertex labeling and skeletonization approach
Autorzy:
Clouchoux, C.
Kudelski, D.
Bouyssi-Kobar, M.
Viseur, S.
du Plessis, A.
Evans, A.
Mari, J.-L.
Limperopoulos, C.
Powiązania:
https://bibliotekanauki.pl/articles/333059.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozwój mózgu
ocena krzywizny
wychwytywanie cech
sulcal pattern
brain development
in-vivo MRI
cortical surface
curvature estimation
morphological operators
feature extraction
Opis:
Normal brain development is associated with expansion and folding of the cerebral cortex in a normal sequence of gyral–sulcal formation. We propose a global approach for measuring the cortical folding pattern of the developing brain. Our method measures geometric features directly on the cortical surface mesh, based on vertex labeling and skeletonization. The resulting extraction provides an accurate representation of global cortical organization. We applied this method to 17 young infants in order to characterize the evolution of cortical organization in the developing brain.
Źródło:
Journal of Medical Informatics & Technologies; 2010, 16; 161-166
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies