Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "monitorowanie stanu" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Fault diagnosis of high-speed rotating machines using MATLAB
Autorzy:
Joshi, Mahesh B.
Pujari, Kamlesh S.
Powiązania:
https://bibliotekanauki.pl/articles/2203637.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
fault diagnosis
condition monitoring
MATLAB
diagnostyka uszkodzeń
monitorowanie stanu
Opis:
Industrial high-speed rotating machines entail constant and consistent monitoring to prevent downtime, affecting quantity and quality. Complex machines need advanced intelligent fault diagnosis showing minimal errors. This work offers a MATLAB-based fault diagnosis for sugar industry machines. The vibration behavior of physical industrial machines is obtained, and the signals are provided to a MATLAB program to identify the fault. The information helps to suggest remedies to include in the maintenance schedule. The ease and comprehensible nature of the method reduce time and enhance the reliability of condition monitoring for industrial machines.
Źródło:
Diagnostyka; 2023, 24, 2; art. no. 2023208
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wind turbine generator slip ring damage detection through temperature data analysis
Autorzy:
Astolfi, Davide
Castellani, Francesco
Natili, Francesco
Powiązania:
https://bibliotekanauki.pl/articles/329616.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
wind energy
wind turbines
fault diagnosis
condition monitoring
principal components regression
energetyka wiatrowa
turbina wiatrowa
diagnostyka uszkodzeń
monitorowanie stanu
Opis:
The use of condition monitoring techniques in wind energy has been recently growing and the average unavailability time of an operating wind turbine in an industrial wind farm is estimated to be less than the 3%. The most powerful approach for gearbox condition monitoring is vibration analysis, but it should be noticed as well that the collected data are complex to analyse and interpret and that the measurement equipment is costly. For these reasons, several wind turbine subcomponents are monitored through temperature sensors. It is therefore valuable developing analysis techniques for this kind of data, with the aim of detecting incoming faults as early as possible. On these grounds, the present work is devoted to a test case study of wind turbine generator slip ring damage detection. A principal component regression is adopted, targeting the temperature collected at the slip ring. Using also the data collected at the nearby wind turbines in the farm, it is possible to identify the incoming fault approximately one day before it occurs.
Źródło:
Diagnostyka; 2019, 20, 3; 3-9
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Role of knowledge management in diagnosing and prognosing systems failures
Rola zarządzania wiedzą w diagnozowaniu i prognozowaniu uszkodzeń systemu
Autorzy:
Obeid, N.
Salah, I.
Rao, R.B.K.N.
Powiązania:
https://bibliotekanauki.pl/articles/328976.pdf
Data publikacji:
2006
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
zarządzanie wiedzą
reprezentacja wiedzy
monitorowanie stanu
diagnozowanie
prognozowanie
uszkodzenie
knowledge management
intelligence
knowledge representation
condition monitoring
fault diagnosis
fault prognosis
Opis:
In this paper we emphasize the importance of condition monitoring fault diagnosis and prognosis in modern dynamic systems, if they are to remain healthy, competitive and profitable, and to meet the challenges of the future. We argue that there is an urgent need for deep knowledge based reasoning and analytical capability to effectively deal with various ongoing issues related to systems operations, performances enhancement and failures. We put forward that Knowledge Management plays an important role in an integrative approach to enhance the quality, reliability and safety aspects of such systems in today's global environment.
W pracy przedstawiono rolę zarządzania wiedzą na proces diagnozowania i prognozowania uszkodzeń systemu. Autorzy przeanalizowali interakcje pomiędzy wiedzą, działaniem i uszkodzeniem oraz przedstawili koncepcję zarządzania wiedzą ukierunkowaną na jakość, niezawodność i bezpieczeństwo systemu.
Źródło:
Diagnostyka; 2006, 1(37); 9-16
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Worm gear condition monitoring and fault detection from thermal images via deep learning method
Monitorowanie stanu i wykrywanie błędów przekładni ślimakowej na podstawie termogramów z wykorzystaniem metody głębokiego uczenia
Autorzy:
Karabacak, Yunus Emre
Gürsel Özmen, Nurhan
Gümüşel, Levent
Powiązania:
https://bibliotekanauki.pl/articles/1841856.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
fault diagnosis
worm gears
thermal imaging
convolutional neural networks
GoogLeNet
condition monitoring
diagnostyka błędów
przekładnie ślimakowe
termografia
splotowe sieci neuronowe
monitorowanie stanu
Opis:
Worm gearboxes (WG) are often preferred, because of their high torque, quickly reducing speed capacity and good meshing effectiveness, in many industrial applications. However, WGs may face with some serious problems like high temperature at the speed reducer, gear wearing, pitting, scoring, fractures and damages. In order to prevent any damage, loss of time and money, it is an important issue to detect and classify the faults of WGs and develop the maintenance plans accordingly. The present study addresses the application of the deep learning method, convolutional neural network (CNN), in the field of thermal imaging that were gathered from a test rig operating on different loads and speeds. Deep learning approaches, have proven their powerful capability to exploit faulty information from big data and make intelligently diagnostic decisions. Studies concerning the condition monitoring of WGs in the literature are limited. This is the first study on WGs with infrared thermography rather than vibration and sound measurements which have some deficiencies about hardware requirements, restricted measurement abilities and noisy signals. For comparison, CNN was also trained, with vibration and sound data which were collected from the healthy and faulty WGs. The results of fault diagnosis show that thermal image based CNN model on WG has achieved 100% success rate whereas the vibration performance was 83.3 % and sound performance was 81.7%. As a result, thermal image based CNN model showed a better diagnosing performance than the others for WGs. Moreover, condition monitoring of WGs, can be performed correctly with less measurement costs via thermal imaging methods.
W wielu zastosowaniach przemysłowych preferuje się przekładnie ślimakowe, ze względu na ich wysoki moment obrotowy, możliwość szybkiej redukcji prędkości i dobrą sprawność zazębienia. Jednakże przekładnie tego typu narażone są często na poważne problemy, takie jak wysoka temperatura przy reduktorze prędkości czy też zużycie, pitting (wżery), zatarcie, pęknięcie lub uszkodzenie kół zębatych. Zapobiec takim uszkodzeniom, i związanym z nimi stratom finansowym i czasowym, można poprzez wykrywanie i klasyfikowanie błędów przekładni i odpowiednie opracowanie planów konserwacji. Niniejsze badanie dotyczy zastosowania metody głębokiego uczenia oraz splotowych sieci neuronowych (SSN) do monitoringu stanu przekładni na podstawie termogramów zarejestrowanych na stanowisku testowym pracującym przy różnych obciążeniach i prędkościach. Podejścia oparte na uczeniu głębokim umożliwiają efektywne wykorzystanie informacji o błędach pochodzących z dużych zbiorów danych i podejmowanie trafnych decyzji diagnostycznych. Niewiele z dostępnych publikacji poświęconych jest monitorowaniu stanu przekładni ślimakowych. Niniejsza praca jako pierwsza przedstawia badania przekładni ślimakowej z zastosowaniem termografii zamiast zwyczajowo prowadzonych pomiarów drgań i dźwięku, które mają pewne wady dotyczące wymagań sprzętowych, ograniczonych możliwości pomiarowych i głośności sygnałów. SNN opartą na danych termicznych porównano z siecią, którą uczono na zbiorach danych wibracyjnych i akustycznych pochodzących z prawidłowo działających i uszkodzonych przekładni ślimakowych. Wyniki diagnostyki uszkodzeń pokazują, że model SSN przekładni ślimakowej oparty na obrazie termicznym osiągnął stuprocentową (100%) skuteczność, podczas gdy skuteczność modeli opartych na danych wibracyjnych i akustycznych wyniosła, odpowiednio, 83,3% i 81,7%. Tym samym, model SNN oparty na obrazie termicznym pozwalał na trafniejsze diagnozowanie przekładni ślimakowej niż pozostałe modele. Ponadto zastosowanie metod opartych na termografii pozwala na poprawne monitorowanie stanu przy niższych kosztach pomiaru.
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 3; 544-556
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stator winding fault detection of permanent magnet synchronous motors based on the bispectrum analysis
Autorzy:
Pietrzak, Przemysław
Wolkiewicz, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/2173641.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fault diagnosis
condition monitoring
inter-turn short circuits
permanent magnet synchronous motor
bispectrum
fast Fourier transform
błędna diagnoza
monitorowanie stanu
zwarcia międzyzwojowe
silnik synchroniczny z magnesami trwałymi
bispektrum
szybka transformata Fouriera
Opis:
The popularity of high-efficiency permanent magnet synchronous motors in drive systems has continued to grow in recent years. Therefore, also the detection of their faults is becoming a very important issue. The most common fault of this type of motor is the stator winding fault. Due to the destructive character of this failure, it is necessary to use fault diagnostic methods that facilitate damage detection in its early stages. This paper presents the effectiveness of spectral and bispectrum analysis application for the detection of stator winding faults in permanent magnet synchronous motors. The analyzed diagnostic signals are stator phase current, stator phase current envelope, and stator phase current space vector module. The proposed solution is experimentally verified during various motor operating conditions. The object of the experimental verification was a 2.5 kW permanent magnet synchronous motor, the construction of which was specially prepared to facilitate inter-turn short circuits modelling. The application of bispectrum analysis discussed so far in the literature has been limited to vibration signals and detecting mechanical damages. There are no papers in the field of motor diagnostic dealing with the bispectrum analysis for stator winding fault detection, especially based on stator phase current signal.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 2; art. no. e140556
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies