Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "condition monitoring" wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Fault diagnosis of rotating machines using vibration and bearing temperature measurements
Autorzy:
Nembhard, A. D.
Sinha, J. K.
Pinkerton, A. J.
Elbhbah, K.
Powiązania:
https://bibliotekanauki.pl/articles/328481.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
vibration monitoring
condition monitoring
rotating machinery
fault diagnosis
principal component analysis
Opis:
Acquisition and subsequent processing of vibration data for fault diagnosis of rotating machinery with multiple bearings, such as Turbo-generator (TG) sets, can be quite involved, as data are usually required in three mutually perpendicular directions for reliable diagnosis. Consequently, the task of diagnosing faults on such systems may be daunting for even an experienced analyst. Hence, the current study aims to develop a simplified fault diagnosis (FD) method that uses just a single vibration and a single temperature sensor on each bearing. Initial trials on an experimental rotating rig indicate that supplementing vibration data with temperature measurements gave improved FD when compared with FD using vibration data alone. Observations made from the initial trials are presented in this paper.
Źródło:
Diagnostyka; 2013, 14, 3; 45-51
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fault diagnosis of high-speed rotating machines using MATLAB
Autorzy:
Joshi, Mahesh B.
Pujari, Kamlesh S.
Powiązania:
https://bibliotekanauki.pl/articles/2203637.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
fault diagnosis
condition monitoring
MATLAB
diagnostyka uszkodzeń
monitorowanie stanu
Opis:
Industrial high-speed rotating machines entail constant and consistent monitoring to prevent downtime, affecting quantity and quality. Complex machines need advanced intelligent fault diagnosis showing minimal errors. This work offers a MATLAB-based fault diagnosis for sugar industry machines. The vibration behavior of physical industrial machines is obtained, and the signals are provided to a MATLAB program to identify the fault. The information helps to suggest remedies to include in the maintenance schedule. The ease and comprehensible nature of the method reduce time and enhance the reliability of condition monitoring for industrial machines.
Źródło:
Diagnostyka; 2023, 24, 2; art. no. 2023208
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detection of single and multiple IGBTs open-circuit faults in a field-oriented controlled induction motor drive
Autorzy:
Sobański, P.
Orłowska-Kowalska, T.
Powiązania:
https://bibliotekanauki.pl/articles/140648.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
induction motor
field-oriented control
condition monitoring
open-circuit
fault
fault diagnosis
Opis:
In this paper a transistor open-circuit fault diagnosis method in a rotor field oriented controlled induction motor drive, fed by a two-level voltage inverter has been proposed. The diagnostic procedure ensures detection and localization of single or multiple power switch failures in time shorter than one period of a stator current fundamental harmonic, without regard to a drive operation point. A new simple scheme of the diagnostic system is proposed. In order to validate the proposed transistor fault diagnostic method, a detailed simulation as well as experimental tests of the field-oriented control drive system were carried out and some of them are shown in this paper.
Źródło:
Archives of Electrical Engineering; 2017, 66, 1; 89-104
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Soft computing methods applied to condition monitoring and fault diagnosis for maintenance
Autorzy:
Zio, E.
Powiązania:
https://bibliotekanauki.pl/articles/2069596.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Morski w Gdyni. Polskie Towarzystwo Bezpieczeństwa i Niezawodności
Tematy:
soft computing
artificial neural networks
fuzzy logic
genetic algorithms
condition monitoring
fault diagnosis
maintenance
Opis:
Malfunctions in equipment and components are often sources of reduced productivity and increased maintenance costs in various industrial applications. For this reason, machine condition monitoring is being pursued to recognize incipient faults in the strive towards optimising maintenance and productivity. In this respect, the following lecture notes provide the basic concepts underlying some methodologies of soft computing, namely neural networks, fuzzy logic systems and genetic algorithms, which offer great potential for application to condition monitoring and fault diagnosis for maintenance optimisation. The exposition is purposely kept on a somewhat intuitive basis: the interested reader can refer to the copious literature for further technical details.
Źródło:
Journal of Polish Safety and Reliability Association; 2007, 2; 363--377
2084-5316
Pojawia się w:
Journal of Polish Safety and Reliability Association
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stator Winding Fault Detection of Permanent Magnet Synchronous Motors Based on the Short-Time Fourier Transform
Autorzy:
Pietrzak, Przemysław
Wolkiewicz, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/2175935.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
fault diagnosis
condition monitoring
inter-turn short circuit
permanent magnet synchronous motor
short-time Fourier transform
Opis:
In modern drive systems, the high-efficient permanent magnet synchronous motors (PMSMs) have become one of the most substantial components. Nevertheless, such machines are exposed to various types of faults. Hence, on-line condition monitoring and fault diagnosis of PMSMs have become necessary. One of the most common PMSM faults is the stator winding fault. Due to the destructive character of this failure, it is necessary to use fault diagnostic methods that allow fault detection at its early stage. The article presents the results of experimental studies obtained from fast Fourier transform (FFT) and short-time Fourier transform (STFT) analyses of the stator phase current, stator phase current envelope and stator phase current space vector module. The superiority of the proposed method over the classical approach based on the stator current analysis using FFT is highlighted. The proposed solution is experimentally verified under various motor operating conditions. The application of STFT analysis discussed so far in the literature has been limited to the fault diagnosis of induction motors and the narrow range of the analysed motor operating conditions. Moreover, there are no works in the field of motor diagnostics dealing with STFT analysis for stator windings based on the stator current envelope and the stator current space vector module.
Źródło:
Power Electronics and Drives; 2022, 7, 42; 112--133
2451-0262
2543-4292
Pojawia się w:
Power Electronics and Drives
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wind turbine generator slip ring damage detection through temperature data analysis
Autorzy:
Astolfi, Davide
Castellani, Francesco
Natili, Francesco
Powiązania:
https://bibliotekanauki.pl/articles/329616.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
wind energy
wind turbines
fault diagnosis
condition monitoring
principal components regression
energetyka wiatrowa
turbina wiatrowa
diagnostyka uszkodzeń
monitorowanie stanu
Opis:
The use of condition monitoring techniques in wind energy has been recently growing and the average unavailability time of an operating wind turbine in an industrial wind farm is estimated to be less than the 3%. The most powerful approach for gearbox condition monitoring is vibration analysis, but it should be noticed as well that the collected data are complex to analyse and interpret and that the measurement equipment is costly. For these reasons, several wind turbine subcomponents are monitored through temperature sensors. It is therefore valuable developing analysis techniques for this kind of data, with the aim of detecting incoming faults as early as possible. On these grounds, the present work is devoted to a test case study of wind turbine generator slip ring damage detection. A principal component regression is adopted, targeting the temperature collected at the slip ring. Using also the data collected at the nearby wind turbines in the farm, it is possible to identify the incoming fault approximately one day before it occurs.
Źródło:
Diagnostyka; 2019, 20, 3; 3-9
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Role of knowledge management in diagnosing and prognosing systems failures
Rola zarządzania wiedzą w diagnozowaniu i prognozowaniu uszkodzeń systemu
Autorzy:
Obeid, N.
Salah, I.
Rao, R.B.K.N.
Powiązania:
https://bibliotekanauki.pl/articles/328976.pdf
Data publikacji:
2006
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
zarządzanie wiedzą
reprezentacja wiedzy
monitorowanie stanu
diagnozowanie
prognozowanie
uszkodzenie
knowledge management
intelligence
knowledge representation
condition monitoring
fault diagnosis
fault prognosis
Opis:
In this paper we emphasize the importance of condition monitoring fault diagnosis and prognosis in modern dynamic systems, if they are to remain healthy, competitive and profitable, and to meet the challenges of the future. We argue that there is an urgent need for deep knowledge based reasoning and analytical capability to effectively deal with various ongoing issues related to systems operations, performances enhancement and failures. We put forward that Knowledge Management plays an important role in an integrative approach to enhance the quality, reliability and safety aspects of such systems in today's global environment.
W pracy przedstawiono rolę zarządzania wiedzą na proces diagnozowania i prognozowania uszkodzeń systemu. Autorzy przeanalizowali interakcje pomiędzy wiedzą, działaniem i uszkodzeniem oraz przedstawili koncepcję zarządzania wiedzą ukierunkowaną na jakość, niezawodność i bezpieczeństwo systemu.
Źródło:
Diagnostyka; 2006, 1(37); 9-16
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Worm gear condition monitoring and fault detection from thermal images via deep learning method
Monitorowanie stanu i wykrywanie błędów przekładni ślimakowej na podstawie termogramów z wykorzystaniem metody głębokiego uczenia
Autorzy:
Karabacak, Yunus Emre
Gürsel Özmen, Nurhan
Gümüşel, Levent
Powiązania:
https://bibliotekanauki.pl/articles/1841856.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
fault diagnosis
worm gears
thermal imaging
convolutional neural networks
GoogLeNet
condition monitoring
diagnostyka błędów
przekładnie ślimakowe
termografia
splotowe sieci neuronowe
monitorowanie stanu
Opis:
Worm gearboxes (WG) are often preferred, because of their high torque, quickly reducing speed capacity and good meshing effectiveness, in many industrial applications. However, WGs may face with some serious problems like high temperature at the speed reducer, gear wearing, pitting, scoring, fractures and damages. In order to prevent any damage, loss of time and money, it is an important issue to detect and classify the faults of WGs and develop the maintenance plans accordingly. The present study addresses the application of the deep learning method, convolutional neural network (CNN), in the field of thermal imaging that were gathered from a test rig operating on different loads and speeds. Deep learning approaches, have proven their powerful capability to exploit faulty information from big data and make intelligently diagnostic decisions. Studies concerning the condition monitoring of WGs in the literature are limited. This is the first study on WGs with infrared thermography rather than vibration and sound measurements which have some deficiencies about hardware requirements, restricted measurement abilities and noisy signals. For comparison, CNN was also trained, with vibration and sound data which were collected from the healthy and faulty WGs. The results of fault diagnosis show that thermal image based CNN model on WG has achieved 100% success rate whereas the vibration performance was 83.3 % and sound performance was 81.7%. As a result, thermal image based CNN model showed a better diagnosing performance than the others for WGs. Moreover, condition monitoring of WGs, can be performed correctly with less measurement costs via thermal imaging methods.
W wielu zastosowaniach przemysłowych preferuje się przekładnie ślimakowe, ze względu na ich wysoki moment obrotowy, możliwość szybkiej redukcji prędkości i dobrą sprawność zazębienia. Jednakże przekładnie tego typu narażone są często na poważne problemy, takie jak wysoka temperatura przy reduktorze prędkości czy też zużycie, pitting (wżery), zatarcie, pęknięcie lub uszkodzenie kół zębatych. Zapobiec takim uszkodzeniom, i związanym z nimi stratom finansowym i czasowym, można poprzez wykrywanie i klasyfikowanie błędów przekładni i odpowiednie opracowanie planów konserwacji. Niniejsze badanie dotyczy zastosowania metody głębokiego uczenia oraz splotowych sieci neuronowych (SSN) do monitoringu stanu przekładni na podstawie termogramów zarejestrowanych na stanowisku testowym pracującym przy różnych obciążeniach i prędkościach. Podejścia oparte na uczeniu głębokim umożliwiają efektywne wykorzystanie informacji o błędach pochodzących z dużych zbiorów danych i podejmowanie trafnych decyzji diagnostycznych. Niewiele z dostępnych publikacji poświęconych jest monitorowaniu stanu przekładni ślimakowych. Niniejsza praca jako pierwsza przedstawia badania przekładni ślimakowej z zastosowaniem termografii zamiast zwyczajowo prowadzonych pomiarów drgań i dźwięku, które mają pewne wady dotyczące wymagań sprzętowych, ograniczonych możliwości pomiarowych i głośności sygnałów. SNN opartą na danych termicznych porównano z siecią, którą uczono na zbiorach danych wibracyjnych i akustycznych pochodzących z prawidłowo działających i uszkodzonych przekładni ślimakowych. Wyniki diagnostyki uszkodzeń pokazują, że model SSN przekładni ślimakowej oparty na obrazie termicznym osiągnął stuprocentową (100%) skuteczność, podczas gdy skuteczność modeli opartych na danych wibracyjnych i akustycznych wyniosła, odpowiednio, 83,3% i 81,7%. Tym samym, model SNN oparty na obrazie termicznym pozwalał na trafniejsze diagnozowanie przekładni ślimakowej niż pozostałe modele. Ponadto zastosowanie metod opartych na termografii pozwala na poprawne monitorowanie stanu przy niższych kosztach pomiaru.
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 3; 544-556
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stator winding fault detection of permanent magnet synchronous motors based on the bispectrum analysis
Autorzy:
Pietrzak, Przemysław
Wolkiewicz, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/2173641.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fault diagnosis
condition monitoring
inter-turn short circuits
permanent magnet synchronous motor
bispectrum
fast Fourier transform
błędna diagnoza
monitorowanie stanu
zwarcia międzyzwojowe
silnik synchroniczny z magnesami trwałymi
bispektrum
szybka transformata Fouriera
Opis:
The popularity of high-efficiency permanent magnet synchronous motors in drive systems has continued to grow in recent years. Therefore, also the detection of their faults is becoming a very important issue. The most common fault of this type of motor is the stator winding fault. Due to the destructive character of this failure, it is necessary to use fault diagnostic methods that facilitate damage detection in its early stages. This paper presents the effectiveness of spectral and bispectrum analysis application for the detection of stator winding faults in permanent magnet synchronous motors. The analyzed diagnostic signals are stator phase current, stator phase current envelope, and stator phase current space vector module. The proposed solution is experimentally verified during various motor operating conditions. The object of the experimental verification was a 2.5 kW permanent magnet synchronous motor, the construction of which was specially prepared to facilitate inter-turn short circuits modelling. The application of bispectrum analysis discussed so far in the literature has been limited to vibration signals and detecting mechanical damages. There are no papers in the field of motor diagnostic dealing with the bispectrum analysis for stator winding fault detection, especially based on stator phase current signal.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 2; art. no. e140556
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies