Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fault network" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Bayesian Network Based Fault Tolerance in Distributed Sensor Networks
Autorzy:
Lokesh, B. B.
Nalini, N.
Powiązania:
https://bibliotekanauki.pl/articles/308287.pdf
Data publikacji:
2014
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
Bayesian network
distributed sensor networks
fault detection
fault tolerance
fault recovery
network control
routing
Opis:
A Distributed Sensor Network (DSN) consists of a set of sensors that are interconnected by a communication network. DSN is capable of acquiring and processing signals, communicating, and performing simple computational tasks. Such sensors can detect and collect data concerning any sign of node failure, earthquakes, floods and even a terrorist attack. Energy efficiency and fault-tolerance network control are the most important issues in the development of DSNs. In this work, two methods of fault tolerance are proposed: fault detection and recovery to achieve fault tolerance using Bayesian Networks (BNs). Bayesian Network is used to aid reasoning and decision making under uncertainty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using BNs. It is also used to detect energy depletion of node, link failure between nodes, and packet error in DSN. The proposed model is used to detect faults at node, sink and network level faults (link failure and packet error). The proposed fault recovery model is used to achieve fault tolerance by adjusting the network of the randomly deployed sensor nodes based on of its probabilities. Finally, the performance parameters for the proposed scheme are evaluated.
Źródło:
Journal of Telecommunications and Information Technology; 2014, 4; 44-52
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A High-Accuracy of Transmission Line Faults (TLFs) Classification Based on Convolutional Neural Network
Autorzy:
Fuada, S.
Shiddieqy, H. A.
Adiono, T.
Powiązania:
https://bibliotekanauki.pl/articles/1844462.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fault detection
fault classification
transmission lines
convolutional neural network
machine learning
Opis:
To improve power system reliability, a protection mechanism is highly needed. Early detection can be used to prevent failures in the power transmission line (TL). A classification system method is widely used to protect against false detection as well as assist the decision analysis. Each TL signal has a continuous pattern in which it can be detected and classified by the conventional methods, i.e., wavelet feature extraction and artificial neural network (ANN). However, the accuracy resulting from these mentioned models is relatively low. To overcome this issue, we propose a machine learning-based on Convolutional Neural Network (CNN) for the transmission line faults (TLFs) application. CNN is more suitable for pattern recognition compared to conventional ANN and ANN with Discrete Wavelet Transform (DWT) feature extraction. In this work, we first simulate our proposed model by using Simulink® and Matlab®. This simulation generates a fault signal dataset, which is divided into 45.738 data training and 4.752 data tests. Later, we design the number of machine learning classifiers. Each model classifier is trained by exposing it to the same dataset. The CNN design, with raw input, is determined as an optimal output model from the training process with 100% accuracy.
Źródło:
International Journal of Electronics and Telecommunications; 2020, 66, 4; 655-664
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Soft Fault Clustering in Analog Electronic Circuits with the Use of Self Organizing Neural Network
Autorzy:
Grzechca, D.
Powiązania:
https://bibliotekanauki.pl/articles/220571.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fault detection
parametric faults
analogue electronic circuits
self-organizing neural network
Opis:
The paper presents a methodology for parametric fault clustering in analog electronic circuits with the use of a self-organizing artificial neural network. The method proposed here allows fast and efficient circuit diagnosis on the basis of time and/or frequency response which may lead to higher production yield. A self-organizing map (SOM) has been applied in order to cluster all circuit states into possible separate groups. So, it works as a feature selector and classifier. SOM can be fed by raw data (data comes from the time or frequency response) or some pre-processing is done at first. The author proposes conversion of a circuit response with the use of e.g. gradient and differentiation. The main goal of the SOM is to distribute all single faults on a two-dimensional map without state overlapping. The method is aimed for the development stage because the tolerances of elements are not taken into account, however single but parametric faults are considered. Efficiency analyses of fault clustering have been made on several examples e.g. a Sallen-Key BPF and an ECG amplifier. Testing procedure is performed in time and frequency domains for the Sallen-Key BPF with limited number of test points i.e. it is assumed that only input and output pins are available. A similar procedure has been applied to a real ECG amplifier in the frequency domain. Results prove a high efficiency in acceptable time which makes the method very convenient (easy and quick) as a first test in the development stage.
Źródło:
Metrology and Measurement Systems; 2011, 18, 4; 555-568
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Expert System Coupled With a Hierarchical Structure of Fuzzy Neural Networks for Fault Diagnosis
Autorzy:
Calado, J. M. F.
Costa, I. S.
Powiązania:
https://bibliotekanauki.pl/articles/908283.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
rozpoznanie błędu
wykrywanie błędu
system ekspertowy
sieć neuronowa rozmyta
fault diagnosis
fault detection
fault isolation
shallow knowledge
deep knowledge
expert system
fuzzy neural network
abrupt faults
incipient faults
Opis:
An on-line fault diagnosis system, designed to be robust to the normal transient behaviour of the process, is described. The overall system consists of an expert system cascade with a hierarchical structure of fuzzy neural networks, corresponding to a multi-stage fault detection and isolation system. The fault detection is performed through the expert system by means of fault detection heuristic rules, generated from deep and shallow knowledge of the process under consideration. If a fault is detected, the hierarchical structure of fuzzy neural networks starts and it performs the fault isolation task. The structure of this diagnosis system was designed to allow for the diagnosis of single and multiple simultaneous abrupt and incipient faults from only single abrupt fault symptoms. Also, it combines the advantages of both fuzzy reasoning and neural networks learning capacity. A continuous binary distillation column has been used as a test bed of the current approach. Single, double and triple simultaneous abrupt faults, as well as incipient faults, have been considered. The preliminary results obtained show a good accuracy, even in the case of multiple faults.
Źródło:
International Journal of Applied Mathematics and Computer Science; 1999, 9, 3; 667-687
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fault detection in electrical drive by means of artificial neural networks
Detekcja uszkodzeń w silniku elektrycznym przy pomocy sztucznych sieci neuronowych
Autorzy:
Głowacki, G.
Patan, K.
Powiązania:
https://bibliotekanauki.pl/articles/327210.pdf
Data publikacji:
2006
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
detekcja uszkodzeń
sieć neuronowa
klasyfikator neuronowy
modelowanie
silnik elektryczny
fault detection
neural network
neural classifier
modeling
electrical drive
Opis:
The paper deals with problem model-based of fault detection electrical drive by using neural networks. The multilayer perceptron with tapped delay lines has been applied to model the diagnosed process at the nominal operation conditions. In turn, decision about faults has been performed using simple MultiLayer Feedforward Network (MFN). The electrical drive under consideration (AMIRA DR300) works in the closed loop and is controlled by PID controller. This laboratory electrical drive renders it positive to simulate a several faulty scenarios. In this way the proposed fault detection scheme can be tested on a number of faulty conditions.
Artykuł przedstawia problem detekcji uszkodzeń w silniku elektrycznym przy pomocy sieci neuronowych. Do zamodelowania diagnozowanego obiektu pracującego w warunkach normalnych użyto sieci jednokierunkowych z liniami opóźniającymi. Następnie, jako blok decyzyjny o wystąpieniu uszkodzeń zastosowano zwykłe jednokierunkowe sieci wielowarstwowe. Do przeprowadzenia badań wykorzystano silnik prądu stałego firmy AMIRA (DR300). Silnik pracuje w układzie zamkniętym z regulatorem PID i umożliwia symulację pewnych scenariuszy uszkodzeń. Dzięki temu możliwe jest przetestowanie zaproponowanego schematu detekcji uszkodzeń na przykładzie wadliwych warunków pracy obiektu.
Źródło:
Diagnostyka; 2006, 2(38); 7-10
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies