Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Shafiee, A." wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Robust fault detection of singular LPV systems with multiple time-varying delays
Autorzy:
Hassanabadi, A. H.
Shafiee, M.
Puig, V.
Powiązania:
https://bibliotekanauki.pl/articles/331490.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
singular delayed LPV systems
fault detection
unknown input observer
robustness
fault sensitivity
detekcja uszkodzeń
odporność
wada wrażliwości
Opis:
In this paper, the robust fault detection problem for LPV singular delayed systems in the presence of disturbances and actuator faults is considered. For both disturbance decoupling and actuator fault detection, an unknown input observer (UIO) is proposed. The aim is to compute a residual signal which has minimum sensitivity to disturbances while having maximum sensitivity to faults. Robustness to unknown inputs is formulated in the sense of the H∞-norm by means of the bounded real lemma (BRL) for LPV delayed systems. In order to formulate fault sensitivity conditions, a reference model which characterizes the ideal residual behavior in a faulty situation is considered. The residual error with respect to this reference model is computed. Then, the maximization of the residual fault effect is converted to minimization of its effect on the residual error and is addressed by using the BRL. The compromise between the unknown input effect and the fault effect on the residual is translated into a multi-objective optimization problem with some LMI constraints. In order to show the efficiency and applicability of the proposed method, a part of the Barcelona sewer system is considered.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2016, 26, 1; 45-61
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies