Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Face" wg kryterium: Temat


Tytuł:
Acces control system using face image
Autorzy:
Bobulski, J.
Powiązania:
https://bibliotekanauki.pl/articles/205672.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
face localization
face detection
face recognition
biometrics
access control
Opis:
Ensuring safety requires the use of access control systems. Traditional systems typically use proximity cards. Modern systems use biometrics to identify the user. Using biological characteristics for identification ensures a high degree of safety. In addition, biological characteristics cannot be neither lost nor stolen. This paper presents proposals for the access control system Rusing face image. The system operates in real time using camera image.
Źródło:
Control and Cybernetics; 2012, 41, 3; 691-703
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A hybrid method for face detection
Hybrydowa metoda detekcji twarzy
Autorzy:
Bobulski, J.
Powiązania:
https://bibliotekanauki.pl/articles/153387.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
detekcja twarzy
lokalizacja twarzy
biometryka
identyfikacja osób
rozpoznawanie twarzy
face detection
face localization
biometrics
face recognition
user identification
Opis:
The face detection problem is the first part of user identification systems. The success of identification depends of effectiveness of face detection and localization. The are many popular methods for face detection, but not all of them are useful in real-time or on-line face recognition. The proposed hybrid method is useful for this kind of systems and creates possibility to build and develop a practical system for people identification. This method uses a skin detection algorithm with HSV colourspace. Verification of the potential area is performed by face template matching with the eyes image pattern.
Pierwszym elementem systemu identyfikacji użytkownika jest zagadnienie detekcji twarzy. Rezultat identyfikacji zależy od skuteczności procedury detekcji i lokalizacji twarzy. Istnieje wiele popularnych metod detekcji twarzy, które można podzielić na dwie grupy: (i) bazujące na detekcji koloru skóry, (ii) wykorzystujące dopasowanie wzorca. Do detekcji koloru skóry wykorzystuje się jeden z modeli barw, np. RGB, HSV, YCbCr, a następnie weryfikuje się czy wybrany obszar jest twarzą. W systemach dopasowania wzorca należy przeszukać cały obraz porównując fragmenty do wzorca. Te metody są czasochłonne i wymagające dużej mocy obliczeniowej. Większość z tych metod nie jest użytecznych w systemach typu on-line lub czasu rzeczywistego ze względu na czas obliczeń. Zaproponowana hybrydowa metoda jest użyteczna w tego typu systemach i daje możliwość budowy i rozwoju praktycznych systemów identyfikacji osób. Wykorzystuje ona elementy wspomnianych metod w taki sposób, aby skrócić czas obliczeń. Po wstępnej selekcji potencjalnych obszarów mogących zawierać twarz, weryfikacja następuje przy wykorzystaniu wzorca oczu, co znacznie skraca czas obliczeń.
Źródło:
Pomiary Automatyka Kontrola; 2010, R. 56, nr 12, 12; 1498-1500
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatyczny pomiar temperatury na termogramach w diagnostyce bólów głowy
Automatic temperature measurement on thermograms for headache diagnosis
Autorzy:
Marzec, M.
Koprowski, , R.
Wróbel, Z.
Powiązania:
https://bibliotekanauki.pl/articles/157659.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
obrazy termowizyjne twarzy
algorytm
analiza obrazów
face thermograms
algorithm
image analysis
face detection
Opis:
W artykule zaprezentowano algorytm umożliwiający w pełni automatyczną detekcję charakterystycznych obszarów na termogramach zawierających twarze pacjentów w projekcji przedniej. Algorytm prawidłowo wykrywa wymagane obszary niezależnie od położenia głowy w obrazie oraz od jej obrotu. Po prawidłowej detekcji jest przeprowadzany automatyczny pomiar wartości średniej, minimalnej i maksymalnej ich temperatury. W końcowej części artykułu zaprezentowano przykładowe zastosowanie metody do wstępnej detekcji typu i przebiegu bólu głowy.
The algorithm enabling fully automatic detection of characteristic areas of the face on thermograms captured in the anterior projection is presented in the paper. Development and application of medical thermography is also discussed. There are given different types of headaches and methods for their analysis. Regions of: forehead (defined as CL,CP), eye-sockets (defined as OL,OP) and maxillary sinuses (defined as NL,NP) are assumed to be the areas medically essential for headache diagnosis. Thermograms were obtained from thermovision cameras AGEMA 590 and ThermaCam S65. The algorithm detects correctly the required head areas independently of the head position in the picture and its rotation within the range -50 to +50 degrees. Methods of mathematical morphology, active contour, template and Hough transform were used for the analysis. After the correct detection there was taken the automatic measurement of the area of the regions as well as their mean, minimum and maximal temperature. At the end of the paper there is presented an exemplary application of the algorithm for preliminary diagnosis of the type and the course of a headache. The results of segmentation of the face areas are given. The algorithm also makes it possible to analyse the given set of thermograms without necessity of modifying the operation parameters. The set of analysed images after adding translation and rotation includes above 4000 thermograms. The algorithm was developed and tested in Matlab environment.
Źródło:
Pomiary Automatyka Kontrola; 2009, R. 55, nr 11, 11; 923-926
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Układ SoC - FPGA do detekcji twarzy w obrazach cyfrowych
A SoC - FPGA for face detection in digital images
Autorzy:
Wujek, P.
Pełka, R.
Powiązania:
https://bibliotekanauki.pl/articles/155042.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
detekcja twarzy
FPGA
SoC
face detection
Opis:
W artykule przedstawiono wyniki badań dotyczących sprzętowej implementacji algorytmu detekcji twarzy w obrazach cyfrowych z wykorzystaniem układów programowalnych FPGA (Xilinx). Przeprowadzono symulację algorytmu w środowisku PC - Matlab. Przebadany wstępnie algorytm zaimplementowano w układzie FPGA Virtex-4. Wykonano badania eksperymentalne, w których porównano szybkość działania algorytmu w wersji programowej i sprzętowej oraz określono zajętość zasobów układu FPGA.
In this paper there are presented recent results of the authors' work on implementation of face detection algorithms in digital images based on FPGA technology from Xilinx. There was considered a number of existing face detection methods, described in papers [1-3] to find out which one is the best for implementation in a single FPGA device. Then the authors proposed a modified algorithm for face detection that was tested using PC - MATLAB environment. The results of software simulations were used for appropriate adjusting of some essential parameters, according to the requirements of FPGA implementation (the basic limitation is a total number of FPGA resources). The main results of simulations are shown in Tab. 1. The final version of the algorithm was im-plemented in a Virtex-4 FPGA device and tested using a set of example digital images. An important advantage of the proposed SoC for face detection is its speed (2-4 times higher than that for software implementation, as it is shown in Tab. 2). Furthermore, this speed does not depend on the window size used in image analysis. There was also reported the final utilization of FPGA resources (Tab. 3). The experimental results obtained from laboratory tests of the proposed face detection algorithm implemented in a single FPGA device show that the hardware approach to face detection problem has important advantages: high speed, flexibility and relatively low requirements on the total number of FPGA resources.
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 8, 8; 889-891
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detection of selected face areas on thermograms with elimination of typical problems
Autorzy:
Marzec, M.
Koprowski, R.
Wróbel, Z.
Powiązania:
https://bibliotekanauki.pl/articles/333085.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
obrazy termowizyjne twarzy
termogramy
algorytm
analiza obrazu
segmentacja
analiza twarzy
wykrywanie twarzy
wykrywanie charakterystycznych cech twarzy
face thermovision images
thermograms
algorithm
image analysis
segmentation
face analysis
face detection
detection of characteristic face features
Opis:
The paper presents an algorithm enabling a fully automatic detection of characteristic areas on thermograms containing patients' faces in a front projection. A resolution of problems occurring at the segmentation of face images, such as a change of position, orientation and scale, has been proposed. In addition, attempts to eliminate the effect of the background and of disturbances caused by the haircut and the hairline were made. The algorithm may be used to detect selected points and areas of a face or as a preliminary component in the face recognition, as a development of optical analysis methods or in the quantitative analysis of face on thermograms.
Źródło:
Journal of Medical Informatics & Technologies; 2010, 16; 151-159
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Implementacja algorytmu detekcji twarzy w obrazach cyfrowych z układem SoC Zynq
SoC Zynq-based implementation of a face detection algorithm in digital images
Autorzy:
Wujek, P.
Pełka, R.
Powiązania:
https://bibliotekanauki.pl/articles/155729.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
detekcja twarzy
FPGA
SoC
face detection
Opis:
W artykule przedstawiono koncepcję i projekt mikrosystemu do detekcji twarzy w obrazach cyfrowych z użyciem układu programowalnego SoC z rodziny Zynq firmy Xilinx [1]. Algorytm detekcji twarzy polega na wyodrębnieniu podstawowych cech twarzy i określeniu ich położenia w obrazie. Przedstawiono wyniki implementacji programowej w środowisku MATLAB/PC oraz implementacji sprzętowej. Obie implementacje przebadano pod względem złożoności oraz szybkości działania. W realizacji sprzętowej uzyskano porównywalną szybkość detekcji/lokalizacji twarzy i ponad 10-krotnie krótszy czas wyodrębniania cech twarzy.
In this paper there is presented the design of an integrated microsystem for face detection in digital images, based on a new SoC Zynq from Xilinx [1]. Zynq is a new class of SoCs which combines an industry-standard ARM dual-core Cortex-A9 processing system with 28 nm programmable logic. This processor-centric architecture delivers a comprehensive platform that offers ASIC levels of performance and power consumption, the ease of programmability and the flexibility of a FPGA. The proposed algorithm for face detection operates on images having the resolution of 640x480 pixels and 24-bit color coding. It uses three-stage processing: normalization, face detection/location [2] and feature extraction. We implemented the algorithm in a twofold way: (1) using MATLAB/PC, and (2) hardware platform based on ZedBoard from Avnet [3] with Zynq XC7Z020 SoC. Both implementations were examined in terms of complexity and speed. The hardware implementation achieved a comparable speed of face detection/location but was over 10-times faster while extracting the features of faces in digital images. A significant speedup of feature extraction results from the parallelized architecture of a hardware accelerator for calculation of mouth and eyes locations. The proposed microsystem may be used in low-cost, mobile applications for detection of human faces in digital images. Since the system is equipped with the Linux kernel, it can be easily integrated with other mobile applications, including www services running on handheld terminals with the Android operating system.
Źródło:
Pomiary Automatyka Kontrola; 2013, R. 59, nr 8, 8; 809-811
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza efektywności sprzętowych implementacji algorytmów detekcji twarzy w obrazach cyfrowych
Effectiveness analysis of hardware implementations of face detection algorithms in digital images
Autorzy:
Wujek, P.
Pełka, R.
Powiązania:
https://bibliotekanauki.pl/articles/156623.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
detekcja twarzy
FPGA
GPU
GPGPU
face detection
Opis:
W artykule przedstawiono i porównano wyniki implementacji przykładowego algorytmu detekcji twarzy w obrazach cyfrowych na trzech platformach sprzętowych: z użyciem CPU (Matlab), w strukturze programowalnej FPGA z procesorem sprzętowym PowerPC [1], oraz z wykorzystaniem CPU z akceleracją GPU. Powyższe implementacje przebadano eksperymentalnie pod względem złożoności implementacji i szybkości działania poszczególnych fragmentów algorytmu. Porównano je ze sobą oraz przedstawiono najlepsze obszary zastosowań poszczególnych z nich.
This paper describes comparison of hardware implementations of a face detection algorithm using three different platforms: (1) classic CPU implementation (Matlab), (2) implementation with use of programmable logic - FPGA with hardware processor PowerPC [1], and (3) CPU based version with GPU acceleration. These tree versions have been experimentally tested and compared in terms of the required hardware resources and operating speed, which is of great importance in most practical applications. We also discuss advantages and drawbacks of these three approaches to hardware implementation of face detection algorithms. In particular, we formulate some important conditions that the analyzed image must meet to obtain the optimum effectiveness of the face detection algorithm implemented on each platform. Finally, we show that use of GPU acceleration can take advantage of the classic CPU and parallel computing accessible to FPGA. The proposed solution of skin color detection time for the CPU with GPU acceleration is over 100 times shorter than that for the solution with the classical CPU. As a programmable device we have used FPGA Virtex-4 chip from Xilinx, and as a GPU accelerator we have utilized graphic card nVidia GeForce 8600 GT.
Źródło:
Pomiary Automatyka Kontrola; 2012, R. 58, nr 7, 7; 581-583
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detection of human faces in thermal infrared images
Autorzy:
Kowalski, Marcin Ł.
Grudzień, Artur
Ciurapiński, Wiesław
Powiązania:
https://bibliotekanauki.pl/articles/1849135.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
thermal infrared
face detection
biometrics
human detection
Opis:
The presented study concerns development of a facial detection algorithm operating robustly in the thermal infrared spectrum. The paper presents a brief review of existing face detection algorithms, describes the experiment methodology and selected algorithms. For the comparative study of facial detection three methods presenting three different approaches were chosen, namely the Viola-Jones, YOLOv2 and Faster-RCNN. All these algorithms were investigated along with various configurations and parameters and evaluated using three publicly available thermal face datasets. The comparison of the original results of various experiments for the selected algorithms is presented.
Źródło:
Metrology and Measurement Systems; 2021, 28, 2; 307-321
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fatigue Detection Using Computer Vision
Autorzy:
Patel, M.
Lal, S.
Kavanagh, D.
Rossiter, P.
Powiązania:
https://bibliotekanauki.pl/articles/226744.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
face detection
eye blink detection
fatigue
computer vision
Opis:
Long duration driving is a significant cause of fatigue related accidents of cars, airplanes, trains and other means of transport. This paper presents a design of a detection system which can be used to detect fatigue in drivers. The system is based on computer vision with main focus on eye blink rate. We propose an algorithm for eye detection that is conducted through a process of extracting the face image from the video image followed by evaluating the eye region and then eventually detecting the iris of the eye using the binary image. The advantage of this system is that the algorithm works without any constraint of the background as the face is detected using a skin segmentation technique. The detection performance of this system was tested using video images which were recorded under laboratory conditions. The applicability of the system is discussed in light of fatigue detection for drivers.
Źródło:
International Journal of Electronics and Telecommunications; 2010, 56, 4; 457-461
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Face recognition using the Haar classifier cascade and face detection based on detection of skin color areas
Rozpoznawanie twarzy metodą kaskady klasyfikatorów Haara i detekcja twarzy w oparciu o wykrywanie obszarów o kolorze skóry
Autorzy:
Kątek, G.
Holik, A.
Zabłocki, T.
Dobrzyńska, P.
Powiązania:
https://bibliotekanauki.pl/articles/973111.pdf
Data publikacji:
2016
Wydawca:
Politechnika Bydgoska im. Jana i Jędrzeja Śniadeckich. Wydawnictwo PB
Tematy:
rozpoznawanie twarzy
kaskady klasyfikatorów Haara
detekcja twarzy na podstawie koloru skóry
face detection
Haar classifier cascade
face detection based on skin color
Opis:
The article presents two methods of face detection. The first of these is a method Haar classifier cascade. The second is a face detection method based on detection of skin color areas. They propose a face detection algorithm based on skin color. The main emphasis lies on the effectiveness of the algorithm in order to properly recognize a human face. The results allowed to evaluate the effectiveness of the proposed method.
W artykule przedstawiono dwie metody detekcji twarzy. Pierwsza z nich to metoda kaskady klasyfikatorów Haara. W metodzie tej ważne jest położenie twarzy w stosunku do kąta obrócenia zdjęcia. Rozpoznawane są tylko „pionowe” twarze. Drugą stanowi metoda detekcji twarzy w oparciu o wykrywanie obszarów o kolorze skóry. Zaproponowano algorytm detekcji twarzy w oparciu o kolor skóry. Główny nacisk położono na skuteczność algorytmu w celu poprawnego rozpoznania ludzkiej twarzy. Otrzymane wyniki pozwoliły ocenić skuteczność zaproponowanej metody.
Źródło:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy; 2016, 19; 29-36
1899-0088
Pojawia się w:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przetwarzanie wstępne i analiza obrazu na użytek lokalizacji twarzy
Automatic face detection method
Autorzy:
Majkowski, A.
Kołodziej, M.
Rak, R. J.
Nasternak, M
Powiązania:
https://bibliotekanauki.pl/articles/152848.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
detekcja twarzy
przetwarzanie obrazów
klasyfikacja
face detection
image processing
classification
Opis:
W artykule zaprezentowany jest algorytm automatycznej detekcji twarzy w obrazie statycznym. Detektor ma osiągać najwyższą skuteczność przy znajdowaniu twarzy możliwie niepochylonych i patrzących na wprost kamery. Wielkość wykrywanych twarzy musi być (z pewnymi odchyleniami) zgodna z rozmiarem twarzy zawartych na obrazach zastosowanych do uczenia klasyfikatora. Obrazy wejściowe mogą być kolorowe lub czarno-białe. Nie ma limitu co do liczby twarzy znajdujących się na obrazie.
The aim of this work is to design and implement a face detection algorithm in static images. The detector have to achieve the best results in finding possible not inclined faces of people looking directly at the camera. The authors have proposed an algorithm which operation is based on the appearance (features) of the face. Block diagram of the proposed face detector is given in Fig. 1. In the first stage, the image containing the face is subjected to preprocessing in which normalization is the most important. Normalization aims to unify a variety of analyzed images. We have used here a conversion of colors to gray levels and stretching and equalization of image histogram. Thus prepared image is processed by the appropriate face detection algorithm, which consists of pre-selection and classification. In order to train the classifier the authors created a database of images consisting of two major categories: containing faces and do not contain faces. As a collection of images that include faces there have been used Olivetti DB ORL database [1]. Final processing step is to get rid of the multiple detection of the same faces. As a result of the algorithm we obtain the location of all faces in the input image (Fig. 4). The size of detected faces should be (with some variations) in accordance with the size of images used to train the classifier. Input images can be color or black and white. There is no limit to the number of faces in an image.
Źródło:
Pomiary Automatyka Kontrola; 2014, R. 60, nr 3, 3; 132-135
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Face detection in color images using skin segmentation
Autorzy:
Hajiarbabi, M.
Agah, A.
Powiązania:
https://bibliotekanauki.pl/articles/384677.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
skin detection
neural networks
face detection
skin segmentation
image processing
Opis:
Face detection which is a challenging problem in computer vision, can be used as a major step in face recognition. The challenges of face detection in color images include illumination differences, various cameras characteristics, different ethnicities, and other distinctions. In order to detect faces in color images, skin detection can be applied to the image. Numerous methods have been utilized for human skin color detection, including Gaussian model, rule-based methods, and artificial neural networks. In this paper, we present a novel neural network-based technique for skin detection, introducing a skin segmentation process for finding the faces in color images.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2014, 8, 3; 41-51
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Robotic Mobile Holder (For CAR Dashboards)
Autorzy:
Madhunala, Srilatha
Kanneti, Bhavya
Anathula, Priya
Powiązania:
https://bibliotekanauki.pl/articles/2200722.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
LabVIEW
image processing
Servo Motor
NImyRIO
face detection
phone holder
Opis:
In the current smart tech world, there is an immense need of automating tasks and processes to avoid human intervention, save time and energy. Nowadays, mobile phones have become one of the essential things for human beings either to call someone, connect to the internet, while driving people need mobile phones to receive or make a call, use google maps to know the routes and many more. Normally in cars, mobile holders are placed on the dashboard to hold the mobile and the orientation of the phone needs to be changed according to the driver's convenience manually, but the driver may distract from driving while trying to access mobile phone which may lead to accidents. To solve this problem, an auto adjustable mobile holder is designed in such a way that it rotates according to the movement of the driver and also it can even alert the driver when he feels drowsiness. Image Processing is used to detect the movement of the driver which is then processed using LabVIEW software and NI myRIO hardware. NI Vision development module is used to perform face recognition and servo motors are used to rotate the holder in the required position. Simulation results show that the proposed system has achieved maximum accuracy in detecting faces, drowsiness and finding the position coordinates.
Źródło:
International Journal of Electronics and Telecommunications; 2023, 69, 1; 89--98
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detecting gaze direction using robot-mounted and mobile-device cameras
Autorzy:
Jarosz, Mateusz
Nawrocki, Piotr
Placzkiewicz, Leszek
Sniezynski, Bartłomiej
Zielinski, Marcin
Indurkhya, Bipin
Powiązania:
https://bibliotekanauki.pl/articles/305543.pdf
Data publikacji:
2019
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
gaze direction detection
eye-tracking
face detection
robot
mobile device
Opis:
Two common channels through which humans communicate are speech and gaze. Eye gaze is an important mode of communication: it allows people tobetter understand each others’ intentions, desires, interests, and so on. The goal of this research is to develop a framework for gaze triggered events that can be executed on a robot and mobile devices and allows to perform experiments. We experimentally evaluate the framework and techniques for extracting gaze direction based on a robot-mounted camera or a mobile-device camera that are implemented in the framework. We investigate the impact of light on the accuracy of gaze estimation, and also how the overall accuracy depends on user eye and head movements. Our research shows that light intensity is important, and the placement of a light source is crucial. All the robot-mounted gaze detection modules we tested were found to be similar with regard to their accuracy. The framework we developed was tested in a human-robot interaction experiment involving a job-interview scenario. The flexible structure of this scenario allowed us to test different components of the framework in varied real-world scenarios, which was very useful for progressing towards our long-term research goal of designing intuitive gaze-based interfaces for human robot communication.
Źródło:
Computer Science; 2019, 20 (4); 453-474
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The vehicle driver safety prediction system
Autorzy:
Haller, Piotr
Wróbel, Radosław
Sierzputowski, Gustaw
Dimitrov, Radostin
Mihaylow, Veselin
Powiązania:
https://bibliotekanauki.pl/articles/2097644.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Naukowe Silników Spalinowych
Tematy:
safety
system
vehicles
drowsiness
face detection
bezpieczeństwo
pojazdy
senność
rozpoznawanie twarzy
Opis:
The article presents analysis of road crash accidents. It presents the evolution of safety systems, starting from a description of the currently used vehicle-based systems, with particular emphasis on the prediction of the driver falling asleep. The article also proposes a proprietary system of sleep prediction based on the face detection of drivers. The detection of facial landmarks is presented as a two-step process: an algorithm finds faces in general, and then needs to localize key facial structures within the face region of interest.
Źródło:
Combustion Engines; 2022, 61, 3; 11--17
2300-9896
2658-1442
Pojawia się w:
Combustion Engines
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies