- Tytuł:
- Experimental Studies on Advanced Sheet Explosive Formulations Based on 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and Hydroxyl Terminated Polybutadiene (HTPB), and Comparison with a RDX-based System
- Autorzy:
-
Jangid, S. K.
Talawar, M. B.
Singh, M. K.
Nath, T.
Sinha, R. K. - Powiązania:
- https://bibliotekanauki.pl/articles/358055.pdf
- Data publikacji:
- 2016
- Wydawca:
- Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
- Tematy:
-
hazardous materials
sheet explosive
explosive reactive armour (ERA)
CL-20
RDX - Opis:
- The present investigation reports the use of 2,4,6,8,10,12-hexanitro2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) in sheet explosive formulations. In this study, hydroxyl terminated polybutadiene (HTPB) based sheet explosives were prepared incorporating the powerful explosive CL-20 as a partial replacement for hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX). The effects of incorporating CL-20 on the performance, sensitivity, thermal and mechanical properties of the sheet explosive compositions are reported. Sheet explosive formulation containing 80% of RDX and 20% of HTPB-binder was studied as control sample. HTPBbinder consisted of 12% HTPB, 2.9% dioctyl adipate (DOA) and 5.1% dioctyl phthalate (DOP). HTPB was cured with 4,4’-methylene diphenyl di-isocyanate (MDI) to form urethane linkages. The incorporation of 20% of CL-20 in place of RDX led to a remarkable increase in the velocity of detonation (VOD), of the order of 7680 m/s, and to better mechanical properties in terms of tensile strength (1.14 MPa) compared to the control formulation [RDX /HTPB-binder (80/20)]. The 20% CL-20 incorporated sheet explosive formulation also showed remarkable increases in impact and shock sensitivity. Thermal analysis of the sheet explosive compositions has also been carried out using differential scanning calorimetry (DSC).
- Źródło:
-
Central European Journal of Energetic Materials; 2016, 13, 1; 135-147
1733-7178 - Pojawia się w:
- Central European Journal of Energetic Materials
- Dostawca treści:
- Biblioteka Nauki