Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Multi-objective Optimization" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Multi-objective optimization of vehicle routing problem using evolutionary algorithm with memory
Autorzy:
Podlaski, K.
Wiatrowski, G.
Powiązania:
https://bibliotekanauki.pl/articles/305266.pdf
Data publikacji:
2017
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
vehicle routing problem
time windows
evolutionary algorithms
multi-objective optimization
Opis:
The idea of a new evolutionary algorithm with memory aspect included is proposed to find multiobjective optimized solution of vehicle routing problem with time windows. This algorithm uses population of agents that individually search for optimal solutions. The agent memory incorporates the process of learning from the experience of each individual agent as well as from the experience of the population. This algorithm uses crossover operation to define agents evolution. In the paper we choose as a base the Best Cost Route Crossover (BCRC) operator. This operator is well suited for VPRTW problems. However it does not treat both of parent symmetrically what is not natural for general evolutionary processes. The part of the paper is devoted to find an extension of the BCRC operator in order to improve inheritance of chromosomes from both of parents. Thus, the proposed evolutionary algorithm is implemented with use of two crossover operators: BCRC and its extended-modified version. We analyze the results obtained from both versions applied to Solomon’s and Gehring & Homberger instances. We conclude that the proposed method with modified version of BCRC operator gives statistically better results than those obtained using original BCRC. It seems that evolutionary algorithm with memory and modification of Best Cost Route Crossover Operator lead to very promising results when compared to the ones presented in the literature.
Źródło:
Computer Science; 2017, 18 (3); 269-286
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Shape optimization of the muffler shield with regard to strength properties
Autorzy:
Jarosz, Joachim
Długosz, Adam
Powiązania:
https://bibliotekanauki.pl/articles/38903721.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
muffler shield
evolutionary algorithms
multi-objective optimization
finite element method
optimal design
Opis:
This paper is devoted to the shape optimization of the muffler shield with regard to strength properties. Three different optimization criteria are defined and numerically implemented concerning the strength properties of the shield, and different variants of optimization tasks are solved using both built-in optimization modules and in-house external algorithms. The effectiveness and efficiency of the optimization methods used are compared and presented.
Źródło:
Engineering Transactions; 2023, 71, 3; 351-366
0867-888X
Pojawia się w:
Engineering Transactions
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recent developments in simulation-driven multi-objective design of antennas
Autorzy:
Koziel, S.
Bekasiewicz, A.
Powiązania:
https://bibliotekanauki.pl/articles/201914.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
computer-aided design
CAD
antenna design
multi-objective optimization
surrogate models
evolutionary algorithms
projektowanie wspomagane komputerowo
projektowanie anteny
model zastępczy
algorytmy ewolucyjne
Opis:
This paper addresses computationally feasible multi-objective optimization of antenna structures. We review two recent techniques that utilize the multi-objective evolutionary algorithm (MOEA) working with fast antenna replacement models (surrogates) constructed as Kriging interpolation of coarse-discretization electromagnetic (EM) simulation data. The initial set of Pareto-optimal designs is subsequently refined to elevate it to the high-fidelity EM simulation accuracy. In the first method, this is realized point-by-point through appropriate response correction techniques. In the second method, sparsely sampled high-fidelity simulation data is blended into the surrogate model using Co-kriging. Both methods are illustrated using two design examples: an ultra-wideband (UWB) monocone antenna and a planar Yagi-Uda antenna. Advantages and disadvantages of the methods are also discussed.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2015, 63, 3; 781-789
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies