- Tytuł:
- Hyperthermia process control induced by the electric field in order to cancer destroying
- Autorzy:
- Paruch, M.
- Powiązania:
- https://bibliotekanauki.pl/articles/307094.pdf
- Data publikacji:
- 2014
- Wydawca:
- Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
- Tematy:
-
nanocząsteczki
przepływ ciepła
metoda elementów brzegowych
MEB
hipertermia
nanoparticles
bioheat transfer
boundary element method
cancer destruction
evolutionary algorithm
hyperthermia - Opis:
- Purpose: The paper presents numerical modeling of the artificial hyperthermia induced by the electric field in order to destroy the abnormal tissue. In particular, the possibility of process control in order to increase the temperature of only the tumor tissue was discussed. Due to the fact, that the external electrodes which generate the additional heat, heats not only the area of the tumor, but also healthy tissue which surrounds the tumor, increasing the temperature inside the cancer is possible by introducing the paramagnetic nanoparticles into the interior. Additionally, the proper selection of voltage on the electrodes and the number of nanoparticles will achieve the optimal effect of hyperthermia treatment. Methods: The multiple reciprocity BEM is applied to solve the coupled problem connected with the biological tissue heating. In order to determine the appropriate values of the parameters the inverse problem has been formulated, connected with simultaneous identification of the voltage of the electrodes and the number of nanoparticles, which is solved using the evolutionary algorithm. Results: The changes of the voltage of electrodes cause the changes of temperature in the entire domain considered, but the possibilities of temperature field control (e.g. a concentration of maximum temperature at the central point of tumor) are rather unrealizable, because the maximum temperature we could observe in the neighbourhood of the electrodes. Conclusions: The idea consisting in the introduction of nanoparticles to the tumor region (for the concentrated energy deposition at the target tissue) is very effective. We obtain the maximum temperature exactly in the tumor domain.
- Źródło:
-
Acta of Bioengineering and Biomechanics; 2014, 16, 4; 123-130
1509-409X
2450-6303 - Pojawia się w:
- Acta of Bioengineering and Biomechanics
- Dostawca treści:
- Biblioteka Nauki