Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "funkcja agregacji" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Assessment measures of an ensemble classifier based on the distributivity equation to predict the presence of severe coronary artery disease
Autorzy:
Rak, Ewa
Szczur, Adam
Bazan, Jan G.
Bazan-Socha, Stanisława
Powiązania:
https://bibliotekanauki.pl/articles/24200688.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
ensemble method
distributivity equation
aggregation function
CAD
Holter ECG
metoda zespołowa
funkcja agregacji
EKG Holtera
Opis:
The aim of this study is to apply and evaluate the usefulness of the hybrid classifier to predict the presence of serious coronary artery disease based on clinical data and 24-hour Holter ECG monitoring. Our approach relies on an ensemble classifier applying the distributivity equation aggregating base classifiers accordingly. Such a method may be helpful for physicians in the management of patients with coronary artery disease, in particular in the face of limited access to invasive diagnostic tests, i.e., coronary angiography, or in the case of contraindications to its performance. The paper includes results of experiments performed on medical data obtained from the Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland. The data set contains clinical data, data from Holter ECG (24-hour ECG monitoring), and coronary angiography. A leave-one-out cross-validation technique is used for the performance evaluation of the classifiers on a data set using the WEKA (Waikato Environment for Knowledge Analysis) tool. We present the results of comparing our hybrid algorithm created from aggregation with the distributive equation of selected classification algorithms (multilayer perceptron network, support vector machine, k-nearest neighbors, naïve Bayes, and random forests) with themselves on raw data.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 3; 361--377
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies