Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ensemble Learning" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Integrating Vegetation Indices and Spectral Features for Vegetation Mapping from Multispectral Satellite Imagery Using AdaBoost and Random Forest Machine Learning Classifiers
Autorzy:
Saini, Rashmi
Powiązania:
https://bibliotekanauki.pl/articles/2174656.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
ensemble classifiers
Machine Learning
Random Forest
AdaBoost
vegetation mapping
vegetation indices
Opis:
Vegetation mapping is an active research area in the domain of remote sensing. This study proposes a methodology for the mapping of vegetation by integrating several vegetation indices along with original spectral bands. The Land Use Land Cover classification was performed by two powerful Machine Learning techniques, namely Random Forest and AdaBoost. The Random Forest algorithm works on the concept of building multiple decision trees for the final prediction. The other Machine Learning technique selected for the classification is AdaBoost (adaptive boosting), converts a set of weak learners into strong learners. Here, multispectral satellite data of Dehradun, India, was utilised. The results demonstrate an increase of 3.87% and 4.32% after inclusion of selected vegetation indices by Random Forest and AdaBoost respectively. An Overall Accuracy (OA) of 91.23% (kappa value of 0.89) and 88.59% (kappa value of 0.86) was obtained by means of the Random Forest and AdaBoost classifiers respectively. Although Random Forest achieved greater OA as compared to AdaBoost, interestingly AdaBoost provided better class-specific accuracy for the Shrubland class compared to Random Forest. Furthermore, this study also evaluated the importance of each individual feature used in the classification. Results demonstrated that the NDRE, GNDVI, and RTVIcore vegetation indices, and spectral bands (NIR, and Red-Edge), obtained higher importance scores.
Źródło:
Geomatics and Environmental Engineering; 2023, 17, 1; 57--74
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment of Approaches for the Extraction of Building Footprints from Pléiades Images
Autorzy:
Taha, Lamyaa Gamal El-deen
Ibrahim, Rania Elsayed
Powiązania:
https://bibliotekanauki.pl/articles/1837996.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
ensemble classifiers
machine learning
random forest
maximum likelihood
support vector machines
backpropagation
image classification
Opis:
The Marina area represents an official new gateway of entry to Egypt and the development of infrastructure is proceeding rapidly in this region. The objective of this research is to obtain building data by means of automated extraction from Pléiades satellite images. This is due to the need for efficient mapping and updating of geodatabases for urban planning and touristic development. It compares the performance of random forest algorithm to other classifiers like maximum likelihood, support vector machines, and backpropagation neural networks over the well-organized buildings which appeared in the satellite images. Images were subsequently classified into two classes: buildings and non-buildings. In addition, basic morphological operations such as opening and closing were used to enhance the smoothness and connectedness of the classified imagery. The overall accuracy for random forest, maximum likelihood, support vector machines, and backpropagation were 97%, 95%, 93% and 92% respectively. It was found that random forest was the best option, followed by maximum likelihood, while the least effective was the backpropagation neural network. The completeness and correctness of the detected buildings were evaluated. Experiments confirmed that the four classification methods can effectively and accurately detect 100% of buildings from very high-resolution images. It is encouraged to use machine learning algorithms for object detection and extraction from very high-resolution images.
Źródło:
Geomatics and Environmental Engineering; 2021, 15, 4; 101-116
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An autoencoder-enhanced stacking neural network model for increasing the performance of intrusion detection
Autorzy:
Brunner, Csaba
Kő, Andrea
Fodor, Szabina
Powiązania:
https://bibliotekanauki.pl/articles/2147134.pdf
Data publikacji:
2022
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
intrusion detection
neural network
ensemble classifiers
hyperparameter optimization
sparse autoencoder
NSL-KDD
machine learning
Opis:
Security threats, among other intrusions affecting the availability, confidentiality and integrity of IT resources and services, are spreading fast and can cause serious harm to organizations. Intrusion detection has a key role in capturing intrusions. In particular, the application of machine learning methods in this area can enrich the intrusion detection efficiency. Various methods, such as pattern recognition from event logs, can be applied in intrusion detection. The main goal of our research is to present a possible intrusion detection approach using recent machine learning techniques. In this paper, we suggest and evaluate the usage of stacked ensembles consisting of neural network (SNN) and autoencoder (AE) models augmented with a tree-structured Parzen estimator hyperparameter optimization approach for intrusion detection. The main contribution of our work is the application of advanced hyperparameter optimization and stacked ensembles together. We conducted several experiments to check the effectiveness of our approach. We used the NSL-KDD dataset, a common benchmark dataset in intrusion detection, to train our models. The comparative results demonstrate that our proposed models can compete with and, in some cases, outperform existing models.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2022, 12, 2; 149--163
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies