Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "integrals" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Exact solution for large amplitude flexural vibration of nanobeams using nonlocal Euler-Bernoulli theory
Autorzy:
Nazemnezhad, R.
Hosseini-Hashemi, S.
Powiązania:
https://bibliotekanauki.pl/articles/279261.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
nonlinear free vibration
nonlocal elasticity
nanobeam
exact solution
elliptic integrals
Opis:
In this paper, nonlinear free vibration of nanobeams with various end conditions is studied using the nonlocal elasticity within the frame work of Euler-Bernoulli theory with von K´arm´an nonlinearity. The equation of motion is obtained and the exact solution is established using elliptic integrals. Two comparison studies are carried out to demonstrate accuracy and applicability of the elliptic integrals method for nonlocal nonlinear free vibration analysis of nanobeams. It is observed that the phase plane diagrams of nanobeams in the presence of the small scale effect are symmetric ellipses, and consideration the small scale effect decreases the area of the diagram.
Źródło:
Journal of Theoretical and Applied Mechanics; 2017, 55, 2; 649-658
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Boundary-integral model of permanent magnet of a tube segment as shape
Autorzy:
Pawluk, K.
Sulima, R.
Powiązania:
https://bibliotekanauki.pl/articles/140403.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
magnes trwały
metoda całkowo-brzegowa
całki eliptyczne
permanent magnets
boundary integral method
elliptic integrals
Opis:
The magnetic field due to a permanent magnet of a tube-side segment as shape and of radial-oriented magnetization is considered. Such a sheet modelling a single pole of the magnet is used to express the suitable contribution to magnetic quantities. A boundary-integral approach is applied that is based on a virtual scalar quantity attributed to the magnet pole. Such an approach leads to express analytically the scalar magnetic potential and the magnetic flux density by means of the elliptic integrals. Numerical examples of the computed fields are given. The general idea of the presented approach is mainly directed towards designing the magnetic field within the air gap of electric machines with permanent magnets as an excitation source. Other technical structures with permanent magnets may be a subject of this approach as well.
Źródło:
Archives of Electrical Engineering; 2011, 60, 4; 413-432
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of main geometric characteristics of deformed sphere and standard spheroid
Autorzy:
Kovalchuk, Vasyl
Mladenov, Ivaïlo M.
Powiązania:
https://bibliotekanauki.pl/articles/27311436.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
deformed sphere
standard spheroid
sphericity index
elliptic integrals
elliptic functions
tipping point
bifurcation point
sfera zdeformowana
sferoida standardowa
współczynnik sferyczności
punkt zwrotny
punkt bifurkacji
całka eliptyczna
funkcja eliptyczna
Opis:
In the paper we compare the geometric descriptions of the deformed sphere (i.e., the so-called λ-sphere) and the standard spheroid (namely, World Geodetic System 1984’s reference ellipsoid of revolution). Among the main geometric characteristics of those two surfaces of revolution embedded into the three-dimensional Euclidean space we consider the semi-major (equatorial) and semi-minor (polar) axes, quartermeridian length, surface area, volume, sphericity index, and tipping (bifurcation) point for geodesics. Next, the RMS (Root Mean Square) error is defined as the square-rooted arithmetic mean of the squared relative errors for the individual pairs of the discussed six main geometric characteristics. As a result of the process of minimization of the RMS error, we have obtained the proposition of the optimized value of the deformation parameter of the λ-sphere, for which we have calculated the absolute and relative errors for the individual pairs of the discussed main geometric characteristics of λ-sphere and standard spheroid (the relative errors are of the order of 10−6 – 10−9). Among others, it turns out that the value of the,sup> flattening factor of the spheroid is quite a good approximation for the corresponding value of the deformation parameter of the λ-sphere (the relative error is of the order of 10−4).
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 5; art. no. e147058
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mechanics of infinitesimal gyroscopes on helicoid-catenoid deformation family of minimal surfaces
Autorzy:
Kovalchuk, Vasyl
Gołubowska, Barbara
Mladenov, Ivaïlo M.
Powiązania:
https://bibliotekanauki.pl/articles/2128134.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
action-angle analysis
mechanics of infinitesimal gyroscopes
geodesic equations of motion
geodetic equations of motion
helicoid-catenoid deformation family of minimal surfaces
elliptic integrals
elliptic functions
analiza kąta działania
mechanika nieskończenie małych żyroskopów
równanie ruchu geodezyjne
całki eliptyczne
funkcje eliptyczne
rodzina deformacji helikoidów minimalnych powierzchni
rodzina deformacji katenoidów minimalnych powierzchni
Opis:
In this paper we explore the mechanics of infinitesimal gyroscopes (test bodies with internal degrees of freedom) moving on an arbitrary member of the helicoid-catenoid family of minimal surfaces. As the configurational spaces within this family are far from being trivial manifolds, the problem of finding the geodesic and geodetic motions presents a real challenge. We have succeeded in finding the solutions to those motions in an explicit parametric form. It is shown that in both cases the solutions can be expressed through the elliptic integrals and elliptic functions, but in the geodetic case some appropriately chosen compatibility conditions for glueing together different branches of the solution are needed. Additionally, an action-angle analysis of the corresponding Hamilton-Jacobi equations is performed for external potentials that are well-suited to the geometry of the problem under consideration. As a result, five different sets of conditions between the three action variables and the total energy of the infinitesimal gyroscopes are obtained.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 2; e136727, 1--10
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mechanics of infinitesimal gyroscopes on helicoid-catenoid deformation family of minimal surfaces
Autorzy:
Kovalchuk, Vasyl
Gołubowska, Barbara
Mladenov, Ivaïlo M.
Powiązania:
https://bibliotekanauki.pl/articles/2173588.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
action-angle analysis
mechanics of infinitesimal gyroscopes
geodesic equations of motion
geodetic equations of motion
helicoid-catenoid deformation family of minimal surfaces
elliptic integrals
elliptic functions
analiza kąta działania
mechanika nieskończenie małych żyroskopów
równanie ruchu geodezyjne
całki eliptyczne
funkcje eliptyczne
rodzina deformacji helikoidów minimalnych powierzchni
rodzina deformacji katenoidów minimalnych powierzchni
Opis:
In this paper we explore the mechanics of infinitesimal gyroscopes (test bodies with internal degrees of freedom) moving on an arbitrary member of the helicoid-catenoid family of minimal surfaces. As the configurational spaces within this family are far from being trivial manifolds, the problem of finding the geodesic and geodetic motions presents a real challenge. We have succeeded in finding the solutions to those motions in an explicit parametric form. It is shown that in both cases the solutions can be expressed through the elliptic integrals and elliptic functions, but in the geodetic case some appropriately chosen compatibility conditions for glueing together different branches of the solution are needed. Additionally, an action-angle analysis of the corresponding Hamilton-Jacobi equations is performed for external potentials that are well-suited to the geometry of the problem under consideration. As a result, five different sets of conditions between the three action variables and the total energy of the infinitesimal gyroscopes are obtained.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 2; art. no. e136727
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies